Estimation of Evapotranspiration of Winter Wheat-Summer Maize Rotation System in Southern Shanxi Based on Dual-crop Coefficient Approach
ZHAO Jin-jiang, MA Juan-juan, ZHENG Li-jian, SUN Xi-huan, WU Chao-bao
Estimation of Evapotranspiration of Winter Wheat-Summer Maize Rotation System in Southern Shanxi Based on Dual-crop Coefficient Approach
Winter wheat-summer maize rotation system is commonly used in southern Shanxi.In order to evaluate the reliability of dual-crop coefficient approach in winter wheat-summer maize rotation system, and to master the water consumption law of rotation system, in this paper, the evapotranspiration of the winter wheat-summer maize rotation system from 2016 to 2019 was simulated by the dual-crop coefficient approach. The simulated results were evaluated based on the calculation results of water balance method, and plant transpiration (T) and soil evaporation (E) were distinguished. The results showed that in the winter wheat-summer maize rotation system, the average basic crop coefficient (Kcb ) of winter wheat was 0.2, 0.59, 0.98 and 0.15 for the early, developing, middle and late stages, respectively, and that of summer maize was 0.14, 0.69, 1.24 and 0.56; The average soil evaporation coefficient (Ke ) of winter wheat was 1.24, 0.63, 0.07 and 0.42, and that of summer maize was 0.78, 0.45, 0.06, 0.46, respectively. During the whole growth period, ETc of winter wheat was 264.18~526.22 mm, and that of summer maize was 261.76~519.67 mm; The development period was the peak of water consumption, and the proportion of evapotranspiration in the development period of winter wheat and summer maize was 31.2%~51.3% and 34.3%~58.2%, respectively; With the decrease of irrigation times, the plant evapotranspiration and plant transpiration of winter and summer maize decreased gradually, and soil evaporation reached the lowest when irrigation was the least, the E/ETc of the whole growth period was 27.3%~46.4% for winter wheat and 29.3%~44.2% for summer maize. At the early stage of winter wheat and summer maize growth, more than 80% of soil water was consumed by evaporation, and the proportion of soil evaporation was the lowest in the middle stage, which was 6.1%~13.4% for winter wheat and 4%~7.6% for summer maize. The simulated evapotranspiration (ETc- FAO) values of wheat and summer maize showed a good correlation with the measured values (ETc ), R 2 was 0.8~0.86, RMSE was 0.5~0.6 mm/d, MAE was 0.4~0.49 mm/d. It can be seen that the dual-crop coefficient approach has high accuracy in simulating ETc of winter wheat-summer maize rotation system in southern Shanxi, which can provide a theoretical basis for accurately grasping the water consumption law of winter wheat-summer maize rotation system, and then making a reasonable irrigation plan.
winter wheat-summer maize / cropping rotation system / dual-crop coefficient approach / evapotranspiration simulation / plant transpiration / soil evaporation {{custom_keyword}} /
Tab.1 Irrigation date and irrigation amount of each treatment during the experiment表1 试验期间各处理灌水日期及灌水量 |
时间 | 处理 | 灌水日期 | 灌水定额/(m3·hm-2·次-1) | |||||
---|---|---|---|---|---|---|---|---|
冬小麦 | 夏玉米 | |||||||
2016-10-09至2017-09-27 | W1 | 11.22 | 3.22 | 5.08 | 5.22 | 6.16 | 7.24 | 750 |
W2 | 11.22 | 3.22 | 5.22 | 6.16 | ||||
W3 | 11.22 | 3.22 | 6.16 | |||||
W4 | ||||||||
2017-10-20至2018-10-08 | W1 | 3.15 | 4.18 | 5.12 | 5.31 | 8.03 | 9.03 | 750 |
W2 | 3.15 | 4.18 | 5.12 | 8.03 | ||||
W3 | 3.15 | 5.02 | 8.03 | |||||
W4 | ||||||||
2018-10-16至2019-10-01 | W1 | 3.26 | 4.22 | 5.22 | 6.17 | 7.22 | 750 | |
W2 | 3.26 | 5.08 | 6.17 | 8.06 | ||||
W3 | 6.17 |
Tab.2 Growth stage division of winter wheat and summer maize表2 冬小麦-夏玉米生育阶段划分 |
年份 | 作物 | 初期 | 发育期 | 中期 | 后期 | 全生育期 |
---|---|---|---|---|---|---|
2016-2017 | 冬小麦 | 144 d | 61 d | 20 d | 24 d | 2016-10-09至2017-06-14(249 d) |
夏玉米 | 27 d | 31 d | 21 d | 26 d | 2017-06-15至2017-09-27(105 d) | |
2017-2018 | 冬小麦 | 133 d | 61 d | 20 d | 21 d | 2017-10-20至2018-06-11(235 d) |
夏玉米 | 30 d | 31 d | 24 d | 34 d | 2018-06-12至2018010-08(119 d) | |
2018-2019 | 冬小麦 | 136 d | 61 d | 20 d | 23 d | 2018-10-16至2019-06-13(240 d) |
夏玉米 | 29 d | 31 d | 21 d | 30 d | 2019-06-14至2019-10-01(111 d) |
Fig.1 Changes of daily mean temperature T mean, daily mean relative humidity RH mean, net radiation Rn and reference crop evapotranspiration ET 0 during the growth period of winter wheat-summer maize rotation system from 2016 to 2019图1 2016-2019年间冬小麦-夏玉米轮作系统生育期内日平均气温T mean、日平均相对湿度RH mean、净辐射Rn 、参考作物蒸散ET 0变化 |
Tab.3 Main parameters of double crop coefficient method表3 双作物系数法主要参数 |
作物 | 参数 | 取值 | 来源 |
---|---|---|---|
冬小麦 | LAI | 0~10.15(2016-2019) | 实测 |
hc /m | 0.53~0.68(2016-2019) | 实测 | |
Kcb- mean | 初期0.2、发育期0.59、中期0.98、后期0.15 | 校正 | |
Ke- mean | 初期1.24、发育期0.63、中期0.07、后期0.42 | 校正 | |
TEW/mm | 19 | 校正 | |
REW/mm | 7 | 校正 | |
Ze /m | 0.1 | FAO-56 | |
夏玉米 | LAI | 0~4.43(2016-2019) | 实测 |
hc /m | 2.55~3.10(2016-2019) | 实测 | |
Kcb- mean | 初期0.14、发育期0.69、中期1.24、后期0.56 | 校正 | |
Ke- mean | 初期0.78、发育期0.45、中期0.06、后期0.46 | 校正 | |
TEW/mm | 17 | 校正 | |
REW/mm | 7 | 校正 | |
Ze /m | 0.1 | FAO-56 |
Fig.3 Fitted plots of measured and simulated evapotranspiration values of winter wheat-summer maize from 2016 to 2019图3 2016-2019年冬小麦-夏玉米蒸散量实测值和模拟值拟合图 |
Tab.4 Comparison of measured and simulated evapotranspiration values of winter wheat-summer maize from 2016 to 2019表4 2016-2019年间冬小麦-夏玉米蒸散实测值与模拟值对比 |
年份 | 作物 | RMSE/(mm·d-1) | RRMSE | MAE/(mm·d-1) | RBIAS | NSE | d |
---|---|---|---|---|---|---|---|
2016-2018(校准年) | 冬小麦 | 0.50 | 0.20 | 0.40 | -0.05 | 0.89 | 0.97 |
夏玉米 | 0.60 | 0.13 | 0.48 | 0.01 | 0.93 | 0.98 | |
2018-2019(验证年) | 冬小麦 | 0.58 | 0.24 | 0.49 | -0.11 | 0.85 | 0.96 |
夏玉米 | 0.56 | 0.17 | 0.46 | 0.10 | 0.85 | 0.96 |
Tab.5 E and T allocation at each growth stage in W1 treatment of winter wheat-summer maize rotation system from 2016 to 2019表5 2016-2019年间冬小麦-夏玉米轮作系统W1各生育阶段处理E、T分配 |
年份 | 作物 | 组分 | 初期 | 发育期 | 中期 | 后期 | 全生育期 |
---|---|---|---|---|---|---|---|
2016-2017 | 冬小麦 | E/mm | 100.02 | 11.66 | 12.06 | 19.69 | 143.43 |
T/mm | 23.92 | 154.89 | 144.61 | 59.37 | 382.79 | ||
E/ETc | 80.7% | 7.0% | 7.7% | 24.9% | 27.3% | ||
夏玉米 | E/mm | 115.76 | 56.83 | 8.79 | 17.65 | 199.03 | |
T/mm | 16.39 | 133.87 | 111.61 | 58.77 | 320.64 | ||
E/ETc | 87.6% | 29.8% | 7.3% | 23.1% | 38.3% | ||
2017-2018 | 冬小麦 | E/mm | 83.41 | 34.99 | 3.62 | 16.07 | 138.09 |
T/mm | 17.08 | 156.20 | 63.38 | 65.07 | 301.73 | ||
E/ETc | 84.9% | 14.4% | 8.7% | 52.2% | 31.4% | ||
夏玉米 | E/mm | 74.57 | 45.12 | 3.07 | 16.10 | 138.86 | |
T/mm | 15.27 | 201.45 | 53.79 | 65.23 | 335.74 | ||
E/ETc | 83% | 18.3% | 5.4% | 19.8% | 29.3% | ||
2018-2019 | 冬小麦 | E/mm | 69.11 | 28.42 | 5.26 | 28.95 | 131.74 |
T/mm | 11.82 | 105.02 | 74.46 | 47.23 | 238.53 | ||
E/ETc | 85.4% | 21.3% | 6.6% | 38.0% | 35.6% | ||
夏玉米 | E/mm | 81.82 | 38.12 | 3.07 | 22.88 | 145.90 | |
T/mm | 11.26 | 64.36 | 58.29 | 67.19 | 201.10 | ||
E/ETc | 87.9% | 37.2% | 5.0% | 25.4% | 42.0% |
Tab.6 E and T allocation during the whole growth period of each treatment in the winter wheat-summer maize rotation system from 2016 to 2019表6 2016-2019年间冬小麦-夏玉米轮作系统各处理全生育期E、T分配 |
作物 | 处理 | 2016-2017 | 2017-2018 | 2018-2019 | ||||||
---|---|---|---|---|---|---|---|---|---|---|
E/mm | T/mm | E/ETc | E/mm | T/mm | E/ETc | E/mm | T/mm | E/ETc | ||
冬小麦 | W1 | 143.43 | 382.79 | 27.3% | 138.09 | 301.73 | 31.4% | 131.74 | 238.53 | 35.6% |
W2 | 161.47 | 236.56 | 40.6% | 139.11 | 249.06 | 35.8% | 131.87 | 242.53 | 35.2% | |
W3 | 178.17 | 213.75 | 45.5% | 133.68 | 236.51 | 36.1% | 117.82 | 146.36 | 44.6% | |
W4 | 153.69 | 177.39 | 46.4% | 128.93 | 159.51 | 44.8% | ||||
夏玉米 | W1 | 199.03 | 320.64 | 38.3% | 138.86 | 335.74 | 29.3% | 145.90 | 201.10 | 42.0% |
W2 | 204.38 | 277.95 | 42.4% | 136.63 | 290.87 | 32.0% | 131.55 | 190.60 | 40.8% | |
W3 | 206.68 | 261.24 | 44.2% | 132.84 | 274.62 | 32.6% | 101.75 | 160.01 | 38.9% | |
W4 | 151.50 | 230.61 | 39.6% | 117.10 | 220.15 | 34.7% |
1 |
杨梦棣,赵萍萍,于志勇,等.晋南地区小麦–玉米轮作体系维持作物高产和土壤磷素水平的适宜施磷量研究[J].植物营养与肥料学报,2022,28(3):440-449.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
山西省统计局.山西统计年鉴[M].北京:中国统计出版社,2021.
Shanxi Provincial Bureau of Statistics. Statistical yearbook of Shanxi [M]. Beijing: China Statistics Press, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
余昭君,胡笑涛,冉辉,等.基于波文比-能量平衡法的半湿润地区葡萄园蒸发蒸腾量估算[J].干旱地区农业研究,2020,38(4):175-183.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
张春晖.冬小麦/春玉米套作群体蒸发蒸腾过程试验研究[D].陕西杨凌:西北农林科技大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
任世奇,朱原立,梁燕芳,等.基于PM模型的广西南宁尾巨桉中龄林蒸散特征[J].南京林业大学学报(自然科学版),2021,45(2):127-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
高冠龙,张小由,鱼腾飞,等.Shuttleworth-Wallace双源蒸散发模型阻力参数的确定[J].冰川冻土,2016,38(1):170-177.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李丰琇,马英杰.基于双作物系数法的新疆覆膜滴灌夏玉米蒸散量估算[J].农业机械学报,2018,49(11):268-274.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
张硕硕.冬小麦--夏玉米复种连作灌溉制度优化研究[D].郑州:华北水利水电大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
杨天一,王军,张红梅,等.基于单作物系数法的华北平原典型农业生态系统蒸散规律研究[J].中国生态农业学报(中英文),2022,30(3):356-366.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
龚雪文,刘浩,孙景生,等.基于双作物系数法估算不同水分条件下温室番茄蒸发蒸腾量[J].应用生态学报,2017,28(4):1 255-1 264.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
李荣,段喜明,张宝忠,等.基于蒸腾估算的不同施肥量对夏玉米生长及产量的影响研究[J].节水灌溉,2020(5):16-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
付佳祥,党红凯,李晓爽,等.灌溉制度和品种对冬小麦产量性状和水分利用效率的影响[J].中国农村水利水电,2022(6):169-174.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
黄滟淳,崔宁博,陈宣全,等.基于不同机器学习模型的川中丘陵区参考作物蒸散量模拟[J].中国农村水利水电,2020(5):13-20, 27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王振龙,刘竹梅,吕海深,等.基于修正遗传算法的夏玉米作物系数及蒸散发估算[J].生态环境学报,2021,30(1):108-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
戚迎龙,赵举,史海滨,等.覆土浅埋滴灌玉米田双作物系数模型参数全局敏感性分析[J].农业工程学报,2020,36(7):99-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
冯禹,崔宁博,龚道枝,等.基于叶面积指数改进双作物系数法估算旱作玉米蒸散[J].农业工程学报,2016,32(9):90-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
敬峰,段爱旺,张莹莹,等.基于大型蒸渗仪的冬小麦蒸散规律及其模拟[J].灌溉排水学报,2022,41(5):17-26.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
闫世程,张富仓,吴悠,等.滴灌夏玉米土壤水分与蒸散量 SIMDualKc 模型估算[J].农业工程学报,2017,33(16):152-160.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
王子申,蔡焕杰,虞连玉,等. 基于SIMDualKc模型估算西北旱区冬小麦蒸散量及土壤蒸发量[J].农业工程学报,2016,32(5):126-136.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
冯禹,龚道枝,王罕博,等.基于双作物系数的旱作玉米田蒸散估算与验证[J].中国农业气象,2017,38(3):141-149.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 | 〉 |