
Estimation and Variability of Evapotranspiration During Winter Wheat Fertility Based on Generalized Complementarity Principle and Linear Regression
XU Rong-yan, WANG Yi-ning, JIANG Peng, LIU Kai-lei, ZHOU Chao, DING Yu-tong, ZHANG Mei-na
Estimation and Variability of Evapotranspiration During Winter Wheat Fertility Based on Generalized Complementarity Principle and Linear Regression
In order to accurately estimate the ET of winter wheat in the Huaibei Plain, the 2017-2021 meteorological observation data, weighing evapotranspiration meter data and high-precision meteorological station data of Wudougou Experimental Station were selected, and the generalized nonlinear complementary correlation model was constructed to estimate the ET by adopting the principle of generalized complementarity of ET and exploring the applicability of the two αe-annual statistical models based on the aridity coefficient (AI), Liu method and Brutsaert method; and the correlation between ET and meteorological factors during the growing period of winter wheat was also studied. Liu method and Brutsaert method); and correlation analysis between ET and meteorological factors during the growing period of winter wheat, to clarify the degree of ET influencing factors at each fertility stage of wheat; using the stepwise method, we constructed a multivariate linear model of ET and meteorological factors through stepwise regression analysis, and compared it with the generalized nonlinear complementary correlation model, to indentify the ET prediction models of higher accuracy. Results showed that the statistical model using the Brutsaert method to calculate αe based on AI was more accurate than the Liu method. The prediction accuracy of the Liu method at 1 m and 2 m burial depths differed across growth stages, with the order of accuracy being Heading-Maturity > Greening-Jointing > Emergence-Branching > Branch-Overwintering for 1 m burial depth. For the Brutsaert method at 2 m burial depth, accuracy followed the order of Heading-Maturity > Emergence-Branching > Greening-Jointing > Branch-Overwintering. Net radiation and average air temperature during the heading and maturity stages had the strongest influence on evapotranspiration, both promoting ET. The linear regression model of daily ET and meteorological factors during the reproductive period showed higher accuracy compared to the generalized nonlinear complementary correlation model, making it a reliable tool for ET estimation in winter wheat under conditions with limited meteorological data availability.
generalized complementarity / Liu method / Brutsaert method / stepwise regression / winter wheat / Huaibei Plain {{custom_keyword}} /
Tab.1 Soil hydraulic parameters表1 土壤水力参数 |
土壤质地 | 土层深度/cm | 质地类型 | 容重/(g·cm-3) | 田间持水率/% | 凋萎系数/% | 吸湿系数/% | 渗透系数/(mm·h-1) |
---|---|---|---|---|---|---|---|
砂姜黑土 | 0~20 | 黏壤土 | 1.35 | 30.7 | 14.8 | 7.4 | 24.2 |
黄潮土 | 0~20 | 砂壤土 | 1.4 | 23.6 | 12.6 | 5.1 | 20.2 |
Tab.2 Wheat fertility period division表2 小麦生育期划分 |
年份 | 出苗-分蘖 | 分蘖-越冬 | 返青-拔节 | 抽穗-成熟 |
---|---|---|---|---|
2017-2018 | 10-28-11-20 | 11-21-02-28 | 03-01-04-20 | 04-21-05-27 |
2018-2019 | 10-31-11-23 | 11-24-03-03 | 03-04-04-23 | 04-24-06-04 |
2019-2020 | 10-31-11-23 | 11-24-03-03 | 03-04-04-23 | 04-24-05-25 |
2020-2021 | 10-15-11-07 | 11-08-02-15 | 02-16-04-07 | 04-08-05-29 |
Tab.3 Model evaluation principles表3 模型评价原则 |
评价指标 | 评价原则 | |
---|---|---|
NSE | NSE<0 | 估算值与实测值吻合度低,模型估算结果差 |
0<NSE<1 | 估算值与实测值吻合度高,模型估算质量好 | |
MRE | MRE越趋近于0 | 模型模拟效果越好 |
Tab.4 Values of αe under different calculation methods表4 不同计算方法下的αe 取值 |
计算方法 | AI | αe |
---|---|---|
Liu法 | 1.309 681 | 1.107 375 |
Brutsaert法 | 1.309 681 | 0.978 610 |
Fig.2 Scatter plot of the accuracy of the model for predicting the daily evapotranspiration of wheat at 1 m and 2 m depth of groundwater during the whole reproductive period图2 地下水1 m及2 m埋深小麦全生育期日蒸散量预测模型精度散点图 |
Fig.3 Scatterplot of model accuracy for predicting daily evapotranspiration of wheat at each fertility stage at 1 m burial depth图3 1 m埋深各生育期小麦日蒸散量预测模型精度散点图 |
Tab.5 Correlation between daily evapotranspiration and meteorological factors during wheat reproductive period表5 小麦生育期日蒸散量与气象因子相关性表 |
埋深/m | 生育期 | 指标 | 最高温 | 最低温 | 平均气温 | 风速 | 降水 | 相对湿度 | 水汽压力差 | 净辐射 |
---|---|---|---|---|---|---|---|---|---|---|
1 | 出苗-分蘖期 | r | -0.368* | -0.911** | -0.665** | -0.132 | -0.205 | -0.098 | 0.150 | 0.074 |
分蘖-越冬期 | r | 0.082 | -0.296** | -0.071 | -0.148* | -0.113 | -0.421** | 0.564** | 0.554** | |
返青-拔节期 | r | 0.717** | 0.739** | 0.681** | 0.040 | -0.304** | -0.365** | 0.558** | 0.743** | |
抽穗-成熟期 | r | 0.255* | -0.492** | -0.037 | -0.137 | 0.478* | -0.432** | 0.425** | 0.622** | |
2 | 出苗-分蘖期 | r | -0.283 | -0.823** | -0.708** | 0.112 | -0.217 | -0.739** | 0.565** | 0.200 |
分蘖-越冬期 | r | 0.354** | 0.460* | 0.364** | 0.366* | -0.031 | -0.223** | 0.500** | 0.755** | |
返青-拔节期 | r | 0.500** | 0.088 | 0.530** | -0.059 | -0.209* | -0.442** | 0.403** | 0.831** | |
抽穗-成熟期 | r | 0.151 | -0.590** | -0.135 | 0.413** | -0.068 | -0.408** | 0.364** | 0.686** |
Tab.6 Wheat fertility evapotranspiration and meteorological factors fitting model表6 小麦生育期蒸散量与气象因子拟合模型 |
埋深/m | 作物生育期 | 模型 | R 2 | 回归方程 |
---|---|---|---|---|
1 | 出苗-分蘖 | 1 | 0.830 | ETa =-0.101 X 3+2.483 |
分蘖-越冬 | 1 | 0.598 | ETa =0.267 X 2+0.19 X 1-0.005 X 4+0.881 | |
2 | 0.842 | |||
3 | 0.845 | |||
返青-拔节 | 1 | 0.552 | ETa =0.368 X 1+0.156 X 3+0.498 | |
2 | 0.773 | |||
抽穗-成熟 | 1 | 0.387 | ETa =0.194 X 1+0.062 X 5-0.092 X 3+4.654 | |
2 | 0.570 | |||
3 | 0.684 | |||
2 | 出苗-分蘖 | 1 | 0.677 | ETa =-0.103 X 3-0.025 X 4+4.699 |
2 | 0.832 | |||
分蘖-越冬 | 1 | 0.570 | ETa =0.037 X 2+0.287 X 1+0.037 X 3+0.077 X 6+0.239 | |
2 | 0.670 | |||
3 | 0.692 | |||
4 | 0.709 | |||
返青-拔节 | 1 | 0.691 | ETa =0.389 X 1+0.108 X 7-0.404 | |
2 | 0.769 | |||
抽穗-成熟 | 1 | 0.471 | ETa =0.221 X 1-0.095 X 3+0.481 X 6+3.503 | |
2 | 0.572 | |||
3 | 0.703 |
Tab.7 Model test results表7 模型检验结果 |
潜水埋深/m | 生育期 | MRE | NSE | ||||
---|---|---|---|---|---|---|---|
Liu法 | Brutsaert法 | 线性回归 | Liu法 | Brutsaert法 | 线性回归 | ||
1 | 出苗-分蘖 | 0.035 3 | 0.081 5 | 0.050 9 | 0.947 7 | 0.849 3 | 0.823 4 |
分蘖-越冬 | 0.137 0 | 0.173 3 | 0.031 4 | 0.833 2 | 0.761 9 | 0.930 9 | |
返青-拔节 | 0.064 3 | 0.096 5 | 0.040 4 | 0.881 6 | 0.776 7 | 0.966 1 | |
抽穗-成熟 | 0.041 8 | 0.060 8 | 0.030 5 | 0.723 3 | 0.569 1 | 0.896 7 | |
2 | 出苗-分蘖 | 0.105 4 | 0.093 4 | 0.698 0 | 0.933 7 | 0.918 4 | -0.374 8 |
分蘖-越冬 | 0.089 3 | 0.133 7 | 0.192 4 | 0.965 9 | 0.925 0 | 0.856 9 | |
返青-拔节 | 0.052 4 | 0.098 1 | 0.175 5 | 0.969 6 | 0.907 9 | 0.726 0 | |
抽穗-成熟 | 0.028 2 | 0.054 3 | 0.158 6 | 0.984 4 | 0.956 4 | 0.626 4 |
1 |
范 月, 李 薇, 王振龙, 等. 基于水文气象要素的淮北平原夏玉米蒸散灰色模型研究[J]. 水文, 2020,40(3):65-70+87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
刘宏鑫, 杨永民, 龙爱华, 等. 基于站点观测和水量平衡的四种蒸散发产品在我国的评估与对比[J]. 水利水电技术(中英文), 2023,54(3):72-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
鲁 汉, 叶林媛, 罗 鹏, 等. 基于遥感和再分析蒸散发数据的长江流域水循环变化时空特征研究[J]. 中国农村水利水电, 2020(11):42-49+61.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李彤彤.基于水文模型和互补关系的流域土地利用的水文影响研究[D]. 西安:西安理工大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
钱学伟, 李秀珍. 陆面蒸发计算方法述评[J]. 水文, 1996,15(6):24-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
黄俊雄, 韩 丽, 许志兰, 等. 基于Budyko理论的北京地区实际蒸散发估算及特征研究[J]. 水资源与水工程学报, 2020,31(3):1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
朱非林, 王卫光, 孙一萌, 等. 基于互补相关原理的实际蒸散发模型估算能力评价[J]. 水电能源科学, 2013,31(6):33-35+98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
韩松俊, 田富强. 广义非线性蒸发互补关系研究进展[J]. 地球科学进展, 2021,36(8):849-861.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
黄 樱, 陈 挚, 石 喆, 等. 蒸散发广义互补原理中关键参数αe的时空变化特征及计算方法分析[J]. 植物生态学报, 2022,46(3):300-310.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
冯刘成. 基于Brutsaert模型的黄土高原蒸发规律研究[J]. 黑龙江水利科技, 2020,48(8):13-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
赵宇铭. 基于广义互补相关理论的流域实际蒸散发估算及驱动力分析[D]. 南京: 南京信息工程大学, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
马从瑛. 近50年黄土高原蒸发变化规律及原因[D]. 北京:清华大学, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
宋进喜, 高隽清, 李晓鑫, 等. 近20年来黄土高原蒸散发变化规律及其驱动因素[J]. 西北大学学报(自然科学版), 2023,53(6):974-990.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
雒泽林. 中国陆地蒸散发变化及归因分析[D]. 西安:西安理工大学, 2023.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王振龙, 顾 南, 吕海深, 等. 基于温度效应的作物系数及蒸散量计算方法[J]. 水利学报, 2019,50(2):242-251.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
蹇东南, 李修仓, 陶 辉, 等. 基于互补相关理论的塔里木河流域实际蒸散发时空变化及影响因素分析[J]. 冰川冻土, 2016,38(3):750-760.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
赵宇铭, 邱新法, 徐金勤, 等. 基于广义互补原理的嘉陵江流域实际蒸散发时空分布特征及影响因素[J]. 长江科学院院报, 2020,37(1):37-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
Estimation of Actual Evapotranspiration Distribution in the Huaihe River Upstream Basin Based on the Generalized Complementary Principl[Z].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |