Groundwater depth prediction plays an important role in agricultural production, rational utilization of land and water resources, and ecological environment protection. Groundwater depth is a multi-level complex system, which is influenced by many factors, further more, the groundwater’s evolution has the characteristics of uncertain, random, fuzzy and unstable. Based on the strong ability of EEMD to deal with nonlinear problem and the Elman network has the advantages of adaptive time and dynamic memory, a groundwater prediction coupling model based on EEMD and the Elman neural network is proposed, and applied to groundwater depth prediction in people’s victory canal irrigation district. The results show that the maximum relative error, the minimum relative error and the qualified rate are 2.91%, 0.04% and 100%, respectively, and the prediction accuracy of the coupling model is much higher than single BP model and Elman model. In addition, to some extent, the model can reveal the evolution mechanism and factors of groundwater time series, further more, the model is simple in calculation and clear in thinking, which provides a new way for groundwater depth prediction.
Key words
EEMD /
Elman network /
Groundwater depth /
Prediction /
people's victory canal irrigation district
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 乔雨, 梁秀娟, 王宇博.两种模型在地下水埋深预测中的应用及对比研究[J].节水灌溉, 2014, 0(3):45-53
[2] Zhang, N;Xiao, C; Liu, B.Groundwater depth predictions by GSM, RBF, and ANFIS models: a comparative assessment[J].Arabian Journal of Geosciences, 2017, 10(8):189-189
[3] Adhikary, P. & Dash, C.J...Comparison of deterministic and stochastic methods to predict spatial variation of groundwater depth[J]. Applied water science, 2017, 0(7):339-348
[4]Al-Mahallawi, K.Mania,J[J].Hani, A.. Using of neural networks for the prediction of nitrate groundwater contamination in rural and agricultural areas. Environmental Earth Sciences, 2012, 65(3):917-928
[5] Maiti, S& Tiwari, R.K.A comparative study of artificial neural networks, Bayesian neural networks and adaptive neuro-fuzzy inference system in groundwater level prediction[J].Environmental Earth Sciences, 2014, 0(71):3147-3160
[6]杨忠平, 卢文喜, 李平.时间序列模型在吉林西部地下水动态变化预测中的应用[J].水利学报, 2005, 36(12):1475-1479
[7]沈冰, 刘敏, 黄领梅.灰色自记忆模型及其在新疆和田地下水埋深预测中的应用[J].西北农林科技大学学报自然科学版, 2006, 34(11):223-226
[8]李荣峰, 沈冰, 张金凯.考虑周期性变化的地下水埋深预测自记忆模型[J].农业工程学报, 2005, 21(7):34-37
[9] Lapedes, A; Farber, R.Nonlinear Signal Processing Using Neural Network: Prediction and System Modeling[J].IEEE international conference on neural networks, 1987, 无(无):无-无
[10]Wu, Z.H.,Huang,NE.,Long,S.R. On the trend,detrending,and the variability of nonlinear and nonstationary time series.[J].Transactions of the Chinese Society of Agricultural Engineering, 2007, 104(38):14889-14894
[11] Huang, N,E., Shen, Z., Long, S.R.The empirical mode decomposition and the Hilbert spectrum for nonlinear and non-stationary time series analysis[J].Proc Royal Society Lond A, 1998, 0(454):903-995
[12]姚欣明, 陈元芳, 顾圣华.模型在降水预测中的应用[J].水电能源科学, 2014, 32(12):11-13
[13]Flandrin P, Rilling G, Gon?alves P.Empirical mode decomposition as a filterbank[J].IEEE Signal Proc Lett, 2004, 11(2):112-114
[14] Elman J L.Finding structure in time [J].Cognitive Science, 1990, 0(14):179-211
[15] 何玉婉.基于 Elman 神经网络的高速公路入口匝道预测控制仿真研究 [D]. 成都: 西南交通大学信息科与技术学院, 2008: 20?42.
[16] 石黄霞, 何颖, 董晓红.基于Elman神经网络的电力负荷预测模型研究[J].工业仪表与自动化装置, 2013, 0(1):85-87