Abstract
It is hard to simulate the filling process of empty pipes and draining process of liquid-filled pipes in gravity flowed system with traditional characteristics method, because of the changing position and time of corresponding boundary conditions. In this research, Lattice Boltzmann method, as a new 3D transient simulation method, was used to study the filling and draining transient processes of gravity flowed pipes. Different from the traditional one-dimensional analytical method of a system, the Lattice Boltzmann method, which was based on mesoscopic model, built the lattice model of time-space discrete dynamics in gravity flowed pipes according to the essential feature of fluid microscopic movement. Distribution and movement of the mesoscopic fluid particles obeyed the dynamic statistical law, and the fluid macroscopical motion variables could be obtained by statistically averaging a large number of particles in the flow field. Thus this method could deduce visually the changing liquid levels of the filling and draining processes in pipes, fully filling and draining time, changing flow field in the opening gate valves that were respectively at inlet and outlet, as well as the change curves of pressure and velocity at monitoring points behind the valves. At the same time, traditional 1D calculation of the pipe system was used to be compared with the 3D simulation result and make verification. It is an innovative research orientation to use CFD technology to analyze flow field of pipes in system level, which greatly improves the accuracy of results and visually analyzes the transient process of flow field in key location in system as well.
Key words
gravity flow /
Lattice Boltzmann /
pipes /
filling water process /
draining process
{{custom_keyword}} /
Cite this article
Download Citations
MENG Zhao-fang, JIANG Jin, LI Yan-hui, FU Xiang-qian.
Three-dimensional Transient Simulation of Filling and Draining Processes in
Gravity Flowed Pipes Based on Lattice Boltzmann Method. China Rural Water and Hydropower. 2017, 0(1): 130-134
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 李 辉. 重力流压力管道输水系统的水力学问题[J]. 山西建筑,2004,( 8) : 73-74.
[2] 杨照明,张金承. 长距离大落差重力流管道输水技术[J]. 水利建设与管理,2001,( 4) : 12-15.
[3] 赵 鹏,张丹丹,汪鲁兵,等. 格子 Boltzmann 并行程序的优化与性能分析[J]. 微电子学与计算机,2008,25( 10) : 185-188.
[4] 李 剑,施 娟,邱 冰,等. 用格子玻尔兹曼方法研究粒子在涡流中的运动[J]. 桂林电子科技大学学报,2007,( 5) : 387-390.
[5] 刘祖斌,赵 鹏. 结合大涡模拟的格子玻尔兹曼方法模拟高雷诺数流动[J]. 船舶力学,2015,( 5) : 484-492.
[6] 甘延标. 多相流系统的格子玻尔兹曼方法与模拟研究[D]. 北京:中国矿业大学( 北京) ,2012.
[7] Crouse B,Krafczyk M,Kuhner S,et al. Indoor air flow analysisbased on lattice Boltzmann methods[J]. Energy and Buildings,2002,( 34) : 941-949.
[8] 王 辉. 基于格子 Boltzmann 方法的建筑流场仿真研究[D]. 西安: 西安建筑科技大学,2010.
[9] 韦献刚. 基于格子 Boltzmann 方法的地下巷道热流态仿真研究[D]. 西安: 西安建筑科技大学,2009.
[10] 丁全林,王玲玲,汪德爟,等. 基于多松弛格子玻尔兹曼的弯道水流三维数值模拟[J]. 水科学进展,2012,( 4) : 523-528.
[11] 张 博,王利民,王小伟,等. 基于格子玻尔兹曼方法的单孔射流鼓泡床的离散颗粒模拟[J]. 科学通报,2013,( 2) : 158-169.
[12] 许友生,李华兵,方海平,等. 用格子玻尔兹曼方法研究流动-反应耦合的非线性渗流问题[J]. 物理学报,2004,( 3) : 773 -777.
[13] 冯蕾蕾. 基于格子 Boltzmann 方法的复合材料微尺度传热特征研究[D]. 兰州: 兰州大学,2009.
[14] 李 强,余 凯,宣益民. 纳米流体流动与传热过程的 LBM 并行计算[J]. 南京理工大学学报( 自然科学版) ,2005,29( 6) :631-634.
[15] 刘新伟. 重力流管道管径设计[J]. 化工设计,2004,( 2) : 20-22.
[16] 陶文铨. 数值传热学[M]. 2 版. 西安: 西安交通大学出版社,2001.
[17] 段欣悦. 格子玻尔兹曼方法的理论研究与应用[D]. 青岛: 中国石油大学( 华东) ,2006.
[18] Qian Y H,Humieres D D,Lalleman P. Lattice BGK models forNavier-Stokes equation[J]. Europhysisc Letters,1992,17( 6) : 479-484.
[19] 陶 实. 格子玻尔兹曼方法在计算流体力学中的应用研究[D].辽宁大连: 大连理工大学,2013.