The Mixed Strategy Particle Swarm Optimization Algorithm for Determining Aquifer Parameters

DUAN Guo-rong, LIU Yuan-hui

PDF(288 KB)
China Rural Water and Hydropower ›› 2018 ›› (10) : 60-63.

The Mixed Strategy Particle Swarm Optimization Algorithm for Determining Aquifer Parameters

  • DUAN Guo-rong,LIU Yuan-hui
Author information +
History +

Abstract

Based on the conditions of infinitely aquifer and linear impervious boundary aquifer, the mixed strategy particle swarm optimization algorithm was applied to analyze the data of pumping tests for estimating aquifer parameters and provided a new method for estimating aquifer parameters. This mixed algorithm incorporates compaction into particle swarm optimizers algorithm to strengthen the local search ability of the algorithm. Combining with the control of scheduling coefficient to improve the convergence accuracy and speed. And the constraints of certain small probability improves global search ability. Then, the mixed strategy particle swarm optimization algorithm is established. The mixed algorithm can effectively solve the problem of slower convergence speed, poor accuracy and easily trapped into local extreme value, which appeared in particle swarm optimization algorithm. The results show that it is feasible method for estimating aquifer parameters. And the method has the advantage of high optimization accuracy, better convergence and better stability.

Key words

aquifer parameters / particle swarm algorithm / compaction / scheduling

Cite this article

Download Citations
DUAN Guo-rong, LIU Yuan-hui. The Mixed Strategy Particle Swarm Optimization Algorithm for Determining Aquifer Parameters . China Rural Water and Hydropower. 2018, 0(10): 60-63

References

[1] Sageev A, Home R N,Ramey H J.Detection of linear boundaries by drawdown test: a semilog type curve matching approach[J]. Water Resource Research, 1985, 21(3): 305-310.
[2] Chapuis R P. Assessment of methods and condition to locate boundaries: II one straight recharge boundary[J]. Groundwater, 1994, 32(4): 583-590.
[3] Sushil K. Singh. Identifying Effective Distance to a Recharge Boundary[J]. Journal of Hydraulic Engineering, 2001, 127(8): 689-692.
[4] 齐学斌. 非稳定流抽水试验参数的迭代算法及计算机模拟[J]. 水利学报, 1995, 26(7): 67-71.
[5] 郭建青, 李彦, 王洪胜, 等. 分析供水边界含水层抽水试验数据的新方法[J]. 水利学报, 2006, 51(7): 807-812.
[6] Sushil K. Singh. Simple method for confined-aquifer parameter estimation[J]. Journal of Irrigation and Draina-ge Engineering, 2000, 126(6): 404-407.
[7] Sushil K. Singh. Confined Aquifer Parameters from Tem-poral Derivative of Drawdowns[J]. Journal of Hydraulic Engineering, 2001, 127(6): 466-470.
[8] Department of the Interior (USDI) U. S. Groundwater Manual[M]. Bureau of Reclamation. Supt. of Documents, U S Govt. Printing Office Washgton D, C, 1997: 119.
[9] 郭建青, 李 彦, 王洪胜, 等. 粒子群优化算法在确定含水层参数中的应用[J]. 中国农村水利水电, 2008, 50(4): 4-7.
[10] 王静云, 常安定, 郭建青, 等. 基于混沌人工鱼群混合算法确定含水层参数[J]. 中国农村水利水电, 2013, 55(3): 27-33.
[11] 杨陈东, 常安定, 李文胜, 等. 改进粒子群算法在确定含水层参数中的应用[J]. 水资源与水工程学报, 2017, 28(1): 100-103.
[12] 付晓刚, 代锋刚, 邹 晔. 单纯形探索法在确定含水层参数中的应用[J]. 水资源与水工程学报, 2011, 22(6): 46-49.
[13] 周秀秀, 常安定, 郭建青, 等. 混沌粒子群优化算法在确定含水层参数中的应用[J]. 水资源与水工程学报, 2013, 24(1): 96-99.
[14] 杨丹, 刘元会, 郭建青, 等. 基于改进的花粉算法的抽水试验数据分析[J]. 勘察科学技术, 2016, 34(5): 10-13.
[15] 周丹,葛洪伟,苏树智,等.基于紧凑度和调度处理的粒子群优化算法[J].计算机科学与探索,2016, 10(5):742-750.
[16] 周丹. 混合策略粒子群优化算法的研究及利用[D]. 江苏: 江南大学, 2016.
[17] 付翠, 刘元会, 郭建青, 等. 识别河流水质模型参数的单纯形-差分进化混合算法[J]. 水力发电学报,2015, 34(1): 125-130.
[18] 薛禹群. 地下水动力学[M]. 北京: 地质出版社, 1986.
[19] Sushil K. Singh.Aquifer Boundaries and Parameter Ide-ntification Simplified[J]. Journal of Hydraulic Engineer-ing, 2002, 128(8): 774-780.
[20] Yang X S. Flower pollination algorithm for global optimization[M]. Unconventional Compution and Natural Computation, 2012, 7445: 240-249.

Funding

Natural Science Foundation of China
PDF(288 KB)

Accesses

Citation

Detail

Sections
Recommended

/