Real-time Prediction of Hydrological Model Based on Time-varying Gains

LIU Hui-yuan,XIA Jun,ZOU Lei,HONG Si

PDF(510 KB)
China Rural Water and Hydropower ›› 2019 ›› (6) : 16-22.

Real-time Prediction of Hydrological Model Based on Time-varying Gains

  • LIU Hui-yuan1,XIA Jun1,2,ZOU Lei2,HONG Si1
Author information +
History +

Abstract

In recent years, flood disasters have occurred frequently, and flood forecasting is an important non-engineering means to effectively prevent and resist mountain torrent disasters, and provide vital decision-making basis for watershed flood warning. Real-time correction method can effectively improve the accuracy of flood forecasting. In this paper, three typical small and medium-sized watersheds in Hubei Province (Gaojiayan, Xiheyi, Yuyangguan) are used as research areas. Based on the Time Variant Gain Model, the model prediction results are corrected in real time by recursive least square method with variable forgetting factor. The results show that the average Nash efficiency coefficient of flood forecasting in three watersheds is 0.78 before uncorrected. After real-time correction, the Nash efficiency coefficients of the three basins are all above 0.90, and the peak time forecast qualification rates and the peak flow forecast qualification rates are all up to Grade B or above. The forecast accuracy have been significantly improved.

Key words

Flood forecasting / Time Variant Gain Model / Real-time correction

Cite this article

Download Citations
LIU Hui-yuan,XIA Jun,ZOU Lei,HONG Si. Real-time Prediction of Hydrological Model Based on Time-varying Gains. China Rural Water and Hydropower. 2019, 0(6): 16-22

References

[1]石教智, 陈晓宏.流域水文模型研究进展[J].水文, 2006, (01):18-23 [2]Crawford N H, Linsley R K.Digital Simulation in Hydrology: Stanford Watershed Model IV[J].Evapotranspiration, 1966, 39:- [3]Finnerty B D, Smith M B, Seo D, et al.Space-time scale sensitivity of the Sacramento model to radar-gage precipitation inputs[J].Journal of Hydrology, 1997, 203(1-4):21-38 [4]Lee Y, Singh V.Tank model using Kalman filter[J].Journal of hydrologic engineering, 1999, 4(4):344-349 [5]Li H, Zhang Y, Chiew F H, et al.Predicting runoff in ungauged catchments by using Xinanjiang model with MODIS leaf area index[J].Journal of Hydrology, 2009, 370(1):155-162 [6]Abbott M B, Bathurst J C, Cunge J A, et al.An introduction to the European Hydrological System — Systeme Hydrologique Europeen,“SHE”,1: History and philosophy of a physically-based,distributed modelling system[J].Journal of Hydrology, 1986, 87(1–2):45-59 [7]Arnold J G, Srinivasan R, Muttiah R S, et al.LARGE AREA HYDROLOGIC MODELING AND ASSESSMENT PART I: MODEL DEVELOPMENT 1[J].Jawra Journal of the American Water Resources Association, 1998, 34(34):73-89 [8]BEVEN K J, KIRKBY M J.A physically based,variable contributing area model of basin hydrology Un modèle à base physique de zone d'appel variable de l'hydrologie du bassin versant[J].International Association of Scientific Hydrology. Bulletin, 1979, 24(1):43-69 [9]Xu L, Wood E F, Lettenmaier D P.Surface soil moisture parameterization of the VIC-2L model: Evaluation and modification[J].Global & Planetary Change, 1996, 13(1):195-206 [10]夏军.水文非线性系统理论与方法[M]. 武汉: 武汉大学出版社, 2002. [11]冯艳.变化条件下小理河流域产汇流特性研究[D].河海大学, 2007. [12]陈捍华, 李培蕾.流域洪水预报系统及其关键问题研究[J].水利科技与经济, 2005, (02):93-96 [13]韩通, 李致家, 刘开磊, 黄鹏年.山区小流域洪水预报实时校正研究[J].河海大学学报自然科学版, 2015, 43(03):208-214 [14]陈璐, 杨振莹, 周建中, 张勇传, 张俊宏, 黄康迪.基于实时校正和组合预报的水文预报方法研究[J].中南民族大学学报自然科学版, 2017, 36(04):73-77 [15]万蕙, 夏军, 张利平, 宋霁云, 佘敦先.淮河流域水文非线性多水源时变增益模型研究与应用[J].水文, 2015, 35(03):14-19 [16]宋星原, 舒全英, 王海波, 廖为民.遗传算法和单纯形优化算法的应用[J].武汉大学学报工学版, 2009, 42(01):6-9 [17]张建林.Shuffled Complex Evolution算法及其在车间调度中的应用研究[D].兰州理工大学, 2013. [18]刘开磊, 姚成, 李致家, 阚光远, 包红军.水动力学模型实时校正方法对比[J].河海大学学报自然科学版, 2014, 42(02):124-129 [19]余洁.带遗忘因子的递推最小二乘法在SCR喷氨量模型辨识中的应用[J].自动化应用, 2017, (12):52-54 [20]程海云, 芮孝芳.水力学模型实时校正研究进展[J].水利水电技术, 2008, (05):70-73 [21]宋星原.时变增益水文模型的改进及实时预报应用研究[J].武汉大学学报(工学版), 2002, (02):1-4 [22]GB/T22482-2008.水文情报预报规范[S]. 北京: 中国标准出版社, 2009.
PDF(510 KB)

456

Accesses

0

Citation

Detail

Sections
Recommended

/