Application of Echo State Network in the Prediction of Water Level at Waterlogging Point

ZHANG Meng,ZHAO Liang-fang,QUAN Xing

PDF(195 KB)
China Rural Water and Hydropower ›› 2019 ›› (6) : 56-59.

Application of Echo State Network in the Prediction of Water Level at Waterlogging Point

  • ZHANG Meng,ZHAO Liang-fang,QUAN Xing
Author information +
History +

Abstract

Regarding the low utilization rate of monitoring data from urban waterlogging monitoring system,a method based on PSO-ESN for prediction of water level at waterlogging sites is proposed.The historical rainfall and water level data are selected as input vector and the current water level is selected as output vector,the prediction model is established by dynamically approximating the mapping relationship between input and output vectors by echo state network,the future water level is predicted by iterative multi-step prediction method.Particle swarm optimization algorithm is used to relieve the subjective choice of key parameters of the model and the time series embedded dimension.The applicability of the model in the prediction of water level at waterlogging sites is showed by the example.Compared with traditional Elman neural network and BP neural network, the prediction accuracy of the model is respectively increased by 52.9 percent and 82.4 percent.The method can effectively use the monitoring data and provide a scientific foundation for the waterlogging warning and optimized scheduling of drainage system.

Key words

waterlogging / echo state network / particle swarm optimization / time series / water level prediction

Cite this article

Download Citations
ZHANG Meng,ZHAO Liang-fang,QUAN Xing. Application of Echo State Network in the Prediction of Water Level at Waterlogging Point. China Rural Water and Hydropower. 2019, 0(6): 56-59

References

[1]张建云, 王银堂, 贺瑞敏, 等.中国城市洪涝问题及成因分析[J].水科学进展, 2016, 27(4):485-491
[2]夏军, 张印, 梁昌梅, 等.城市雨洪模型研究综述[J]. 武汉大学学报(工学版), 2018(2):95-105.
[3]刘勇, 张韶月, 柳林, 等.智慧城市视角下城市洪涝模拟研究综述[J].地理科学进展, 2015, 34(4):494-504
[4]郑姗姗, 万庆, 贾明元.基于模型的城市暴雨积水点积水短时预测[J].地理科学进展, 2014, 33(7):949-957
[5]周午阳, 孙志民, 汤舒.深层隧道排水区域液位在线监测系统研究[J]. 中国给水排水, 2018(1):1-6.
[6]王晶晶, 杜士强.台州市信息化排水系统的框架及功能研究[J]. 中国给水排水, 2017(7):139-143.
[7]赵印.智慧城市排水管网(内涝)云服务系统设计及监测点优化布置[D]. 华南理工大学, 2017.
[8]赵冬泉, 李雪森, 唐兰贵, 等.SmartWater 智能在线液位监测预警系统介绍及应用[J]. 给水排水, 2015(9):95-100.
[9]Mounce S R, Shepherd W, Sailor G, et al.Predicting combined sewer overflows chamber depth using artificial neural networks with rainfall radar data[J].Water Science & Technology A Journal of the International Association on Water Pollution Research, 2014, 69(6):1326-33
[10]Li X F, Zhou F Y, Lodewyk S, et al.Applications of Artificial Neural Networks in urban water system.[C]// Watershed Management Conference. 2010:47-47.
[11]邵月红, 林炳章, 叶金印, 等.基于动态神经网络的降雨一径流模拟研究[J].大气科学学报, 2014, 37(2):223-228
[12]Chang F J, Chen P A, Lu Y R, et al.Real-time multi-step-ahead water level forecasting by recurrent neural networks for urban flood control[J].Journal of Hydrology, 2014, 517(1):836-846
[13]Yenming C, Chang L C, Mengjung T, et al.Dynamic neural networks for real-time water level predictions of sewerage systems-covering gauged and ungauged sites[J].Hydrology & Earth System Sciences, 2010, 14(7):2317-2345
[14]王建民.基于回声状态网络的非线性时间序列预测方法研究[D]. 哈尔滨工业大学, 2011.
[15]田中大, 高宪文, 李树江, 等.遗传算法优化回声状态网络的网络流量预测[J].计算机研究与发展, 2015, 52(5):1137-1145
[16]涂异, 汪金能, 朱曲平, 等.应用PSO-KELM模型预测水文时间序列[J]. 中国农村水利水电, 2018(7).
[17]蓝祝光, 黄铭.改进PSO-BP神经网络模型在海堤渗压监测中的应用[J]. 中国农村水利水电, 2017(1):148-151.
[18]阮小燕, 邱维.广州市猎德涌流域内涝成因及对策[J].中国给水排水, 2011, 27(4):18-21
PDF(195 KB)

Accesses

Citation

Detail

Sections
Recommended

/