Hydraulic turbine governing system is a complex non-linear non-minimum phase system. In order to study its governing law thoroughly, this paper introduces a second-order generator dynamic model and ignores the frequency disturbance of the system based on the consideration of the non-linearity and elastic water hammer of the turbine and the non-linearity of the generator set.- Nonlinear model of mechanical-electrical combination. Taking PID parameters of governor as control parameters, the model is theoretically analyzed by direct criterion of Hopf bifurcation of six-dimensional autonomous system, and the stability region of the nonlinear system is obtained. Based on the bifurcation diagram, time domain response diagram and system trajectory diagram, the changes of the system topology structure with different governor parameters are analyzed. The results show that when the governor parameters are far away from the bifurcation point, the system can quickly converge and stabilize, which provides a theoretical basis for the setting of the control parameters and the safe and stable operation of the nonlinear turbine governing system.
Key words
hydraulic turbine regulating system /
nonlinear /
PID parameter /
bifurcation /
chaos analysis
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]沈祖饴. 水轮机调速系统[M].北京: 中国水利水电出版社, 1998.
[2]沈祖饴. 水轮机调速系统分析[M].北京: 中国水利水电出版社, 1996.
[3]许贝贝, 陈帝伊, 张浩, 等. 随机转速波动下水轮机调节系统动力稳定性[J].振动与冲击, 2018,37(12):226-231.
[4]张浩. 水轮机调节系统动力学建模与稳定性分析[D].陕西杨凌:西北农林科技大学, 2016.
[5]宋墩文, 姜苏娜, 郝建红, 等. 电力系统低频振荡分岔和混沌机理述评[J].华东电力, 2014,42(6):1 115-1 123.
[6]唐梦雪. 电力系统低频振荡混沌机理与混沌控制研究[D].成都:西南交通大学, 2018.
[7]米昕禾. 基于分岔理论的电力系统电压稳定分析及控制策略研究[D].北京:华北电力大学, 2017.
[8]Hydraulic turbine and turbine control models for system dynamic studies[J].IEEE Transactions on Power Systems: A Publication of the Power Engineering Society, 1992,1(7):167-179.
[9]凌代俭, 沈祖诒. 水轮机调节系统的非线性模型、PID控制及其Hopf分叉[J].中国电机工程学报, 2005(10):97-102.
[10]凌代俭, 沈祖诒. 考虑饱和非线性环节的水轮机调节系统的分叉分析[J].水力发电学报, 2007(6):126-131.
[11]陈帝伊, 郑栋, 马孝义, 等. 混流式水轮机调节系统建模与非线性动力学分析[J].中国电机工程学报, 2012,32(32):116-123.
[12]把多铎, 袁璞, 陈帝伊, 等. 复杂管系水轮机调节系统非线性建模与分析[J].排灌机械工程学报, 2012,30(4):428-435.
[13]张醒, 张德虎, 刘莹莹. 基于分数阶模糊PID控制的水轮机调节系统[J].排灌机械工程学报, 2016,34(6):504-510.
[14]曹春建, 张德虎, 刘莹莹, 等. 基于改进粒子群算法的水轮机调节系统分数阶PI~λD~μ控制器设计[J].中国农村水利水电, 2013(11):96-101.
[15]郭文成, 杨建东, 王明疆. 基于Hopf分岔的变顶高尾水洞水电站水轮机调节系统稳定性研究[J]. 水利学报, 2016,47(2):189-199.
[16]王超, 张德虎, 唐兆祥. 非线性水轮机调节系统的Hopf分岔分析[J].水电能源科学, 2018,36(9):148-151.
[17]李继彬, 冯贝叶. 稳定性、分支与混沌[M].昆明: 云南科技出版社, 1995.
[18]凌代俭. 水轮机调节系统分岔与混沌特性的研究[D].南京:河海大学, 2007.