Abstract
In order to make a more reasonable use of groundwater resources in the Cherchen River Basin in the southern part of the Tarim Basin, this paper uses the multi-year atmospheric precipitation isotope data from two monitoring stations in Hetian and Urumqi to fit the local atmospheric precipitation line LMW: δD=7.5 δ18O+5.9(n=178,R2=0.9526). Combined with the local hydro-geological conditions, this paper explores the groundwater supply source of Cherchen River Basin in Tianma County by using the variation characteristics of surface water and groundwater isotopes (δD, δ18O, T) of different geomorphic units and the relative change rule of Cl- δ18O. The results show that the groundwater of different geomorphic units in the study area is mainly supplied by glacial snowmelt water and alpine rainfall, and the source area is the southern high mountain area. In addition, in recent years, water-saving facilities such as canals and civil wells are built to divert water for irrigation, so that the groundwater in the irrigation area is also supplied by a large number of canal system diversion water and seepage of backwater from farmland irrigation. In the desert area, the T isotopes of groundwater are low, and the δD and δ18O values are close to the local atmospheric precipitation line, so it is speculated that the groundwater in this section is also recharged by local atmospheric precipitation.
Key words
Chelchen River basin /
groundwater /
isotope /
recharge source of groundwater /
arid and semi-arid areas
{{custom_keyword}} /
Cite this article
Download Citations
WANG Xu-dong,LI Sheng,GUO Xin,WANG Lu.
An Analysis of the Groundwater Recharge Source of Cherchen River Basin in Qianma County. China Rural Water and Hydropower. 2020, 0(2): 23-28
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]MAYR C,LUCKE A,STICHLER W,et al. Precipitation origin and evaporation of lakes in semi-arid Patagonia (Argentina) inferred from stable isotopes(δ18O、δ2H)[J]. Journal of Hydrology,2007,334( 1-2):53-63.
[2]陈宗宇,万力,聂振龙,等.利用稳定同位素识别黑河流域地下水的补给来源[J]. 水文地质工程地质, 2006(6):9-14.
[3]李文鹏,郝爱兵.中国西北内陆干旱盆地地下水形成演化模式及其意义[J].水文地质工程地质,1999, 26(4):28-32.
[4]刘君,王莹,卫文,等.利用稳定同位素方法识别内蒙古佘太盆地地下水补给来源[J].水文,2017,37(1):51-55.
[5]KAMTCHUENG B T, FANTONG W Y, WIRMVEM M J, et al. A multi-tracerapproach for assessing the origin, apparent age and recharge mechanism of shallow groundwater in the Lake Nyos catchment, North,west [J]. Journal of Hydrology,2015,523:790-203.
[6]MOKADEM N, DEMDOUM A,HAMED Y,et al. Hydrogeochemical and stable isotope data of groundwater of a multi-aquifer system:northern Gafsa basin-Central Tunisia [J]. Journal of African Earth Sciences,2016,114:174-191.
[7]ABHIJIT MUKHER JEE, ALAN E FRYAR, HAROLD D ROWE. Regional-scale stable isotopic signatures of recharge and deep groundwater in the arsenic affected areas of west Bengal, India [J]. Journal of Hydrology,2007,334:151-161.
[8]阿依努尔?买买提,瓦哈甫?哈力克,杨晓东.车尔臣河流域气候变化及其对河流径流量的影响[J].新疆农 业科学,2010,47(5):996-1 001.
[9]魏光辉.新疆车尔臣河流域近63 a气温、降水与湿润指数变化研究[J].西北水电,2018(1):14-20.
[10]樊自立,徐海量,张鹏,等.新疆车尔臣河及其水资源利用研究[J].干旱区研究,2014,31(1):20-26.
[11]邓丽娟,姜卉芳.基于年尺度的新疆车尔臣河流域各气象要素对水面蒸发影响分析[J].地下水,2013,35(1):90-92.
[12]张琳琳.新疆阿克苏某区域地下水水质评价及污染状况研究[J].地下水,2018,40(3):82-83.
[13]许卫民.新疆且末县车尔臣河流域地下水水文地质条件分析[J].地下水,2017,39(3):230-231.
[14]王志丹.车尔臣河地表水径流变化与水化学变化分析[J].地下水,2016,38(5):122,136.
[15]齐英宝.新疆阿瓦提县地下水动态分析[J].河南水利与南水北调,2016(2):39-40,45.
[16]王龙江.且末县车尔臣河流域灌区地下水水质分析[J].地下水,2013,35(4):85-87.
[17]阿布都热合曼?哈力克,卞正富.新疆车尔臣河流域地下水的可持续开发利用研究[J].水土保持研究,2011,18(5):257-262,266.
[18]关东海,张卫国.新疆车尔臣河水文特征[J].西北水力发电,2004(4):39-41.
[19]唐新军,马英杰.车尔臣河灌区节水改造对周边及下游生态环境的影响[J].节水灌溉,2002(1):18-19,44.
[20]卫文,陈宗宇.应用环境同位素识别松嫩平原西南部地下水的补给来源[J].干旱区资源与环境,2017,31(1):173-177.
[21]马金珠,黄天明,丁贞玉,等.同位素指示的巴丹吉林沙漠南缘地下水补给来源[J].地球科学进展,2007(9):922-930.
[22]武倩倩,任加国,许模.新疆叶尔羌河流域地下水同位素特征及其补给来源分析[J].中国地质,2008(2):331-336.
[23]黄天明,聂中青,袁利娟.西部降水氢氧稳定同位素温度及地理效应[J].干旱区资源与环境,2008(8):76-81.
Funding
Dynamic mechanism and ecological effect of watershed transformation of surface water and groundwater in some typical areas in Junggar basin
{{custom_fund}}