A Prediction of Greenhouse Reference Evapotranspiration Forecasting Based on Fireworks Algorithm Optimized Extreme Learning Machine

ZHANG Qian ,WEI Zheng-ying ,ZHANG Yu-bin ,FENG Pei-cun ,ZHANG Lei ,JIA Wei-bing

PDF(935 KB)
China Rural Water and Hydropower ›› 2020 ›› (3) : 29-32.

A Prediction of Greenhouse Reference Evapotranspiration Forecasting Based on Fireworks Algorithm Optimized Extreme Learning Machine

  • ZHANG Qian1,2 ,WEI Zheng-ying1,2 ,ZHANG Yu-bin1,2 ,FENG Pei-cun1,2 ,ZHANG Lei 1,2 ,JIA Wei-bing1,2
Author information +
History +

Abstract

In order to improve the prediction accuracy of the Reference Crop Evapotranspiration (ET0) in the greenhouse environment, Fireworks Algorithm (FWA) is proposed to optimize the crop reference evapotranspiration model established by Extreme Learning Machine (ELM), which effectively solves the data fluctuation problem caused by the random input weight matrix and the bias matrix of the Extreme Learning Machine in the process of data prediction, improves the prediction accuracy of Extreme Learning Machine. By taking the greenhouse environment data as the input of the model, the FWAELM model is established with reference evapotranspiration ET0 as the output, and the results are compared with the ELM model prediction results. The outcome shows that the root mean square error, mean absolute error and model deterministic coefficients of the FWAELM model are: 0.115 6, 0.143 6, 0.943 8, better than ELM's 0.403 5, 0.346 7 and 0.819 0, FWAELM model has higher prediction accuracy. In addition, the prediction accuracy of the model under the absence of meteorological parameters is studied. The results show that the prediction accuracy of the model is still high when the parameters are three or more, which is suitable for the prediction research on greenhouse ET0.

Key words

reference crop evapotranspiration / fireworks algorithm / extreme learning machine / model prediction

Cite this article

Download Citations
ZHANG Qian ,WEI Zheng-ying ,ZHANG Yu-bin ,FENG Pei-cun ,ZHANG Lei ,JIA Wei-bing. A Prediction of Greenhouse Reference Evapotranspiration Forecasting Based on Fireworks Algorithm Optimized Extreme Learning Machine. China Rural Water and Hydropower. 2020, 0(3): 29-32

References

[1]TABARI H. Evaluation of Reference Crop Evapotranspiration Equations in Various Climates[J]. Water Resources Management, 2010,24(10):2 311-2 337.
[2]PEREIRA L S, ALLEN R G, SMITH M, et al. Crop evapotranspiration estimation with FAO56: Past and future[J]. Agricultural Water Management, 2015, 147:4-20.
[3]李振华, 李毅, 蔡焕杰, 等. 温室逐时参考作物腾发量的估算[J]. 灌溉排水学报, 2013,32(4):71-75.
[4]张晓萍, 张橹, 穆兴民, 等. 黄河中游河口-龙门区间多年平均流水平衡特征[J]. 地理学报, 2007.
[5]徐健锐, 李星毅, 施化吉. 处理缺失数据的短时交通流预测模型[J]. 计算机应用, 2010,30(4):1 117-1 120.
[6]王升, 付智勇, 陈洪松, 等. 基于随机森林算法的参考作物蒸发蒸腾量模拟计算[J]. 农业机械学报, 2017,48(3):302-309.
[7]张育斌, 魏正英, 张磊, 等. 耦合模拟退火优化最小二乘支持向量机的日参照蒸散量模拟计算[J]. 节水灌溉, 2016(9):133-138.
[8]周瑞, 魏正英, 张育斌, 等. 基于粒子群算法和广义回归神经网络的ET0预测[J]. 中国农村水利水电, 2017(6):1-7.
[9]冯禹, 崔宁博, 龚道枝, 等. 基于极限学习机的参考作物蒸散量预测模型[J]. 农业工程学报, 2015,31(S1):153-160.
[10]PANDEY P K, DABRAL P, PANDEY V. Evaluation of reference evapotranspiration methods for the northeastern region of India[J]. International Soil and Water Conservation Research, 2016,4(1):52-63.
[11]潘怀奇, 闭应洲, 潘永华. 基于粒子群优化算法的最优极限学习机[J]. 广西师范学院学报(自然科学版), 2018,35(4):49-53.
[12]谭营. 烟花算法引论[M]. 北京:科学出版社, 2015.
[13]林春伟, 郭永洪, 何金龙. 改进鲸鱼算法优化核极限学习机在水质光谱分析中的应用[J]. 半导体光电, 2019,40(1):112-118.
[14]庾文武, 胡铁松, 王卫光, 等. 气象数据缺测对BP-ET0模型预测精度的敏感性分析[J]. 灌溉排水学报, 2009,28(2):55-58.
PDF(935 KB)

Accesses

Citation

Detail

Sections
Recommended

/