In recent years, catenary channel has been widely used. There is no analytical solution to the transcendental equation for the calculation of critical depth and normal depth of catenary linear section. Firstly, the uniform flow and critical flow equations of the catenary linear section are derived by introducing appropriate dimensionless parameters in combination with the geometric characteristics of the catenary linear section, the hydraulic elements, and the basic equations of uniform flow and critical flow. After mathematical transformation, the Newtonian iterative formulae of normal and critical water depths of catenary linear section are obtained, and the initial value calculation formulas of them are obtained by using the optimization fitting principle, and the direct calculation formulas of normal and critical water depths are obtained after an iteration. Finally, the error analysis and comparison of the formula show that within the scope of engineering application, the maximum absolute relative error of the direct calculation formula of normal water depth and critical water depth is 5.33×10-5% and 5.05×10-5%, respectively. After the second iteration, the accuracy can be improved by 108 times and 106 times, respectively.
Key words
hydraulics /
catenary linear section /
normal depth /
critical water depth /
iterative method hydraulics /
catenary linear section /
normal depth /
critical water depth /
iterative method hydraulics /
catenary linear section /
normal depth /
critical water depth /
iterative method
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]冯雪,马子普.悬链线形渠道正常水深与临界水深的计算方法[J].水电能源科学,2012,3 011:88-90.
[2]吕宏兴,冯家涛.明渠水力最佳断面的比较[J].人民长江,1994(11):42-45.
[3]张宽地,吕宏兴,赵延风.明流条件下圆形隧洞正常水深与临界水深的直接计算[J].农业工程学报,2009,2 503:1-5.
[4]赵延风,祝晗英,王正中.一种新的圆形过水断面正常水深近似计算公式[J].河海大学学报(自然科学版),2 010,3 801:68-71.
[5]ACHOUR B, KHATTAOUI M.Computation of Normal and Critical Depths in Parabolic Cross Sections[J]. Open Civil Engineering Journal, 2008(2):9-14.
[6]VATANKHAH AR.Direct Integration of Gradually Varied Flow Equation in Parabolic Channels[J].Flow Measurement and Instrumentation,2011,22(3):235-241.
[7]范子龙,赵明登. 幂律形水力最佳断面设计与正常水深计算方法[J]. 中国农村水利水电,2015(9):157-159.
[8]文辉,李风玲. 悬链线形渠道正常水深的线性计算公式[J]. 人民黄河,2016,38(12):141-143,148.
[9]滕凯. 悬链线形断面渠道正常水深的简化算法[J]. 水科学与工程技术,2012(6):63-65.
[10]许晓阳,张根广,陈学彪,等. 悬链线形断面正常水深的直接计算公式[J]. 中国农村水利水电,2018(12):156-160.
[11]黄开路,张晓莲,柳凤明. 悬链线形断面明渠的水力计算探讨[J]. 黑龙江水专学报,2006(3):41-42.
[12]陈诚,龚懿,夏熙,等. 悬链线形断面临界水深的直接计算公式[J]. 中国农村水利水电,2016(7):145-148.
[13]陈诚,龚懿,王洁,等. 悬链线形断面渠道临界水深的直接计算方法[J]. 灌溉排水学报,2016,35(11):29-33.
[14]滕凯,王荣. 悬链线形断面渠道临界水深的简化计算[J]. 水利与建筑工程学报,2013,11(2):95-97,102.
[15]徐军辉,金中武,卢金友,等. 悬链线形渠道临界水深的计算方法[J]. 人民长江,2012,43(11):71-73.
[16]清华大学主编.水力学(修订本)上册[M].北京: 高等教育出版社,1980.
[17]季国文.抛物线及悬链线形断面明渠的水力设计[J].水利水电科学进展,1997,17( 2):43-45.