
Experiment of Precipitation-runoff Simulation and Identification of Hydrological Evolution Driving Factors in Inner Mongolia Grassland Watershed
A-long ZHANG, Qing-feng YU, Chan YU, Li-jing FANG, Rui-zhong GAO
Experiment of Precipitation-runoff Simulation and Identification of Hydrological Evolution Driving Factors in Inner Mongolia Grassland Watershed
Taking the Balager River Basin in Inner Mongolia as a typical research object, based on the data of hydrometeorology, vegetation characteristics, topography and landforms and grassland management methods, a precipitation-runoff simulation experiment was designed, and the MK method was used to conduct a sudden change analysis of hydrometeorological sequence, Kriging Spatial interpolation reveals the spatial distribution characteristics of soil-vegetation-root system, precipitation-runoff model simulates the characteristics of grassland watershed runoff generation, establishes a mathematical model of precipitation intensity-topography slope-runoff coefficient of grassland watershed and SWAT model to explore the impact of environmental changes on grassland surface runoff. It shows that: ① The watershed runoff mutation occurred in 1998, the lowest temperature mutation was the earliest (1982), and the precipitation mutation was the latest (2001), with an interval of 19 years; ② The soil saturation and permeability coefficient ranged from 0.19 to 14.23m/d, spatially The variability is significant, the average value is only 2.87 m/d, and the maximum and minimum dry bulk density are close to the average. The capillary rise water content range is the largest, followed by saturated water content; ③ The runoff coefficient is 0.424, and the contribution rate of human activities to the change of runoff coefficient is about 20% before the abrupt change, and more than 50% after the abrupt change. ④ SWAT model shows that the contribution rate of climate change and human activities is 79% and 21% respectively.
plateau inland river / spatial distribution / simulated precipitation test / SWAT model {{custom_keyword}} /
Tab.1 Distinction of the hydrometeorological factors before and after the shift year表1 气象水文要素突变前后变化 |
项目 | 气象要素 | 突变前 | 突变后 | 突变年份 | 变化率/% |
---|---|---|---|---|---|
气象 | 平均气温/℃ | 1.80 | 2.71 | 1991 | 15.50 |
最低气温/℃ | -5.36 | -4.24 | 1982 | -22.90 | |
最高气温/℃ | 8.04 | 8.83 | 1996 | -52.60 | |
降水量/mm | 339.64 | 289.66 | 2001 | -14.72 | |
水文 | 径流深/mm | 9.98 | 6.39 | 1998 | -35.97 |
径流系数 | 0.324 | 0.199 | 1994 | -38.58 |
Tab.2 Statistical parameters of the soil physical characteristics表2 土壤物理特征统计 |
土壤参数 | 统计参数 | |||
---|---|---|---|---|
均值 | 最大值 | 最小值 | 极差 | |
干容重/(g·cm-3) | 1.40 | 1.72 | 1.12 | 0.60 |
饱和渗透系数/(m·d-1) | 2.87 | 14.23 | 0.19 | 14.03 |
毛管上升含水率/% | 26.93 | 44.78 | 6.97 | 37.82 |
饱和含水率/% | 29.63 | 47.16 | 16.69 | 30.47 |
田间持水率/% | 10.43 | 20.70 | 2.83 | 17.87 |
Tab.3 Proportion of different slope area and empirical frequency of precipitation Intensity表3 流域坡度面积与降水强度经验频率占比 |
降水强度/(mm·h-1) | 0~10 | 10~60 | 60~90 | 90~120 |
---|---|---|---|---|
频率/% | 80.00 | 18.50 | 1.02 | 0.48 |
坡度/(°) | 0~10 | 10~16 | 16~28 | |
面积占比/% | 86.17 | 10.77 | 3.05 |
Tab.4 Statistical parameters of runoff characteristics表4 不同坡度和降水强度下产流特征参数 |
坡度/(°) | 降水强度/(mm·h-1) | 总降水量/L | 总径流量/L | 径流系数 |
---|---|---|---|---|
10 | 60 | 7.50 | 1.524 | 0.203 |
90 | 11.25 | 3.268 | 0.290 | |
120 | 15.00 | 7.149 | 0.477 | |
16 | 60 | 7.50 | 1.693 | 0.226 |
90 | 11.25 | 3.855 | 0.343 | |
120 | 15.00 | 7.982 | 0.532 | |
28 | 60 | 7.50 | 1.903 | 0.254 |
90 | 11.25 | 5.091 | 0.453 | |
120 | 15.00 | 8.859 | 0.591 |
Tab.5 Runoff coefficient of the different slope and rainfall intensity表5 不同坡度和降水强度下的径流系数 |
坡度/(°) | 降水强度/(mm·h-1) | |||
---|---|---|---|---|
0~10 | 10~60 | 60~90 | 90~120 | |
0~10 | 0.026 | 0.041 | 0.224 | 0.344 |
10~16 | 0.030 | 0.126 | 0.261 | 0.396 |
16~28 | 0.036 | 0.156 | 0.319 | 0.478 |
Tab.6 Calculation of the basin runoff coefficient表6 流域天然径流系数计算 |
坡度/(°) | 降水强度/(mm·h-1) | 径流系数 | 均值 | |||
---|---|---|---|---|---|---|
0~10 | 10~60 | 60~90 | 90~120 | |||
0~10 | 0.179 | 0.065 | 0.02 | 0.014 | 0.279 | 0.424 |
10~16 | 0.206 | 0.201 | 0.023 | 0.016 | 0.446 | |
16~28 | 0.25 | 0.249 | 0.028 | 0.02 | 0.547 |
Tab.7 Attribution analysis of runoff coefficient表7 流域径流系数变化归因分析 |
时段 | 径流系数 | 贡献率/% | |
---|---|---|---|
气候变化 | 人类活动 | ||
突变前 | 0.324 | 76.42 | 23.58 |
突变后 | 0.199 | 46.93 | 53.07 |
Tab.8 Attribution analysis of basin runoff表8 流域径流变化归因分析 |
径流量/(m3·s-1) | 贡献率/% | ||
---|---|---|---|
实测值 | 模拟值 | 气候变化 | 人类活动 |
0.907 | 0.868 | - | - |
0.519 | 0.622 | 79 | 21 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
阿荣,毕其格,董振华.基于MODIS/NDVI的锡林郭勒草原植被变化及其归因[J].资源科学,2019,41(7):1 374-1 386.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
杨静雅,李新国,闫凯,等.基于NDVI的新疆和静县草地植被覆盖动态变化及其与气温降水的关系[J].生态科学,2018,37(6):38-44.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
包刚,包玉海,覃志豪,等.近10年蒙古高原植被覆盖变化及其对气候的季节响应[J].地理科学,2013,33(5):613-621.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
管晓祥,金君良,黄爱明,等 .黄河流域典型流域水文气象变化与径流过程模拟[J].水利水运工程学报,2019(5):36-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
姚冲,查瑞波,黄少燕,等. 模拟降水条件下第四纪红黏土坡面侵蚀过程[J]. 水土保持学报, 2018,32(3):13-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
刘聚涛,方少文,冯倩,等.基于Mann-Kendall法的湖泊稳态转换突变分析[J].中国环境科学,2015,35(12):3 707-3 713.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
高瑞忠,张阿龙,张生,等.西北内陆盐湖盆地土壤重金属Cr、Hg、As空间分布特征及潜在生态风险评价[J].生态学报,2019,39(7):2 532-2 544.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
吴克宁,赵瑞.土壤质地分类及其在我国应用探讨[J].土壤学报,2019,56(1):227-241.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
陈琰.基于SWAT模型的流域水资源演变机制及归因分析[D].北京:中国水利水电科学研究院, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
白勇,高瑞忠,王喜喜,等.内蒙古巴拉格尔河径流变化的驱动因素[J].干旱区研究,2018,35(2):296-305.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
张阿龙,高瑞忠,刘廷玺,等.高原内陆河流域气候水文突变与生态演变规律:以内蒙古锡林河和巴拉格尔河流域为例[J].中国环境科学 2019,39(12):5 254-5 263.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
鲁克新,李占斌,张霞,等. 室内模拟降水条件下径流侵蚀产沙试验研究[J]. 水土保持学报, 2011(2):8-11,16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
苏辉东,贾仰文,刘欢,等.基于WEP-L模型的寒区流域径流演变模拟及归因分析[J/OL].冰川冻土:1-12:
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
王威娜,高瑞忠,王喜喜,等.锡林河流域径流变化规律及气候波动和人类活动影响的定量分析[J].水土保持研究,2018,25(2):347-353.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
于婵,王威娜,高瑞忠,等.变化环境下半干旱草原流域径流变化特征及其影响因子定量分析[J].水文,2019,39(1):78-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
高瑞忠,白勇,刘廷玺,等. 内蒙古高原典型草原内陆河流域径流的时序演变特征[J].南水北调与水利科技,2018,16(3):10-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
张树磊,杨大文,杨汉波,等.1960-2010年中国主要流域径流量减小原因探讨分析[J].水科学进展,2015,26(5):605-613.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
刘昌明,钟骏襄.黄土高原森林对年径流影响的初步分析[J].地理学报,1978(2):112-127.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
张晓明,曹文洪,余新晓,等.黄土丘陵沟壑区典型流域土地利用/覆被变化的径流调节效应[J].水利学报, 2009,40(6):641-650.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |