
Research on the Multi-Hydraulic Dispatching Scheme of Jinan River Basin Based on Water Environment Treatment
Qing-kui MENG, Yao-hua HU, Wei-hong LIAO, Xiao-hui LEI, Chao WANG
Research on the Multi-Hydraulic Dispatching Scheme of Jinan River Basin Based on Water Environment Treatment
Due to the geographical environment problems in Fuzhou City, the water level of the rivers in the urban area is much low and the fluidity is very poor, which generated the water pollution problem. In order to maintain the water level of Fuzhou's river course to reach the landscape level and effectively alleviate the water pollution problem,for the river network of the Jinan River-Guangminggang River Basin in the downtown area of Fuzhou,a one-dimensional unsteady flow Saint-Venant equation set is established through the InfoWorks ICM hydrodynamic model. At the same time, nine scheduling schemes are designed based on the actual dispatching situation in Fuzhou. The objective function is to establish whether the control target can be achieved,the opening time of the pump station,the number of gate openings, and the average length of the key section not reaching the landscape water level as the objective function. Comparing the results of 9 scheduling schemes,adjusting the pump and gate configuration, and giving a recommended scheduling scheme. At the same time,a water quality model is established,and water environment dispatching simulations are carried out. The time for the BOD level to change from type Ⅳ to type Ⅲ is used as the objective function to evaluate the dispatching plan,and finally the optimal dispatching plan is given for the realization of the urban area. The study of the "water more water dynamic" dispatching scheme provides an important basis.
InfoWorks ICM / hydrodynamic model / water quality model / scheduling plan evaluation {{custom_keyword}} /
Tab.1 Gate parameter table表1 沿江闸站参数表 |
水闸名称 | 总排水量/(m3·s-1) | 闸孔数 | 单孔排水量/(m3·s-1) |
---|---|---|---|
魁岐水闸 | 503 | 5 | 100 |
江四水闸 | 81 | 2 | 40 |
红星水闸 | 80 | 3 | 27 |
Tab.2 Drainage pump station parameter table表2 排水泵站参数表 |
泵站名称 | 设计最大流量/(m3·s-1) | 水泵数量 | 水泵平均设计流量/(m3·s-1) |
---|---|---|---|
魁岐排涝站 | 120 | 3 | 40.0 |
魁岐排涝二站 | 80 | 3 | 26.7 |
东风排涝站 | 80 | 24 | 3.3 |
红星泵站 | 80 | 9 | 8.9 |
Fig.5 The calibration results of the Jin'an River water level process under the typical tide level process line图5 典型潮位过程线下晋安河水位过程率定结果 |
Tab.3 Model calibration results表3 模型率定结果 |
时间 | 实测水位/m | 模拟水位/m | 误差/m |
---|---|---|---|
0∶00∶00 | 4.25 | 4.15 | -0.10 |
1∶00∶00 | 4.30 | 4.18 | -0.12 |
2∶00∶00 | 4.38 | 4.28 | -0.10 |
3∶00∶00 | 4.50 | 4.40 | -0.10 |
4∶00∶00 | 4.46 | 4.56 | 0.10 |
5∶00∶00 | 4.40 | 4.50 | 0.10 |
6∶00∶00 | 4.41 | 4.51 | 0.10 |
7∶00∶00 | 4.38 | 4.48 | 0.10 |
8∶00∶00 | 4.40 | 4.45 | 0.05 |
9∶00∶00 | 4.38 | 4.40 | 0.02 |
10∶00∶00 | 4.39 | 4.35 | -0.04 |
11∶00∶00 | 4.45 | 4.50 | 0.05 |
12∶00∶00 | 4.50 | 4.50 | 0 |
13∶00∶00 | 4.48 | 4.45 | -0.03 |
14∶00∶00 | 4.45 | 4.41 | -0.04 |
15∶00∶00 | 4.41 | 4.38 | -0.03 |
16∶00∶00 | 4.38 | 4.30 | -0.08 |
17∶00∶00 | 4.30 | 4.25 | -0.05 |
18∶00∶00 | 4.25 | 4.30 | 0.05 |
19∶00∶00 | 4.30 | 4.35 | 0.05 |
20∶00∶00 | 4.35 | 4.37 | 0.02 |
21∶00∶00 | 4.37 | 4.40 | 0.03 |
22∶00∶00 | 4.40 | 4.42 | 0.02 |
23∶00∶00 | 4.42 | 4.40 | -0.02 |
Fig.7 Process diagram of water level rise in water diversion channel relying on Wenshanli Pumping Station图7 依靠文山里泵站引水河道水位上涨过程图 |
Tab.4 Different dispatching schemes under the scenario of maintaining 4.2 m in Jinan River-Guangming Port basin表4 晋安河-光明港流域维持4.2 m情景下不同调度方案 |
方案序号 | 上游流量/(m3·s-1) | 下游调控方式 |
---|---|---|
方案一 | 25.0 | 调控方式一 |
方案二 | 25.0 | 调控方式二 |
方案三 | 25.0 | 调控方式三 |
方案四 | 17.5 | 调控方式一 |
方案五 | 17.5 | 调控方式二 |
方案六 | 17.5 | 调控方式三 |
方案七 | 10.0 | 调控方式一 |
方案八 | 10.0 | 调控方式二 |
方案九 | 10.0 | 调控方式三 |
Tab.5 Comparison of the results of different dispatching schemes under the scenario of maintaining 4.2 m in Jinan River-Guangming Port basin表5 晋安河-光明港流域维持4.2 m情景下不同调度方案结果对比 |
目标函数 | 能否达到调控目标 | 泵站开启时间/min | 闸门开启次数/次 | 重点断面未达到景观水位平均时长/min |
---|---|---|---|---|
方案一 | 能 | 魁岐排涝二站开启540 | 48 | 520 |
方案二 | 能 | 魁岐排涝二站开启540 | 50 | 544 |
方案三 | 能 | 魁岐排涝二站开启180 | 48 | 544 |
方案四 | 能 | 魁岐排涝二站开启420 | 48 | 546 |
方案五 | 能 | 魁岐排涝二站开启60 | 48 | 548 |
方案六 | 不能 | |||
方案七 | 能 | 魁岐排涝二站开启150 | 48 | 559 |
方案八 | 不能 | |||
方案九 | 不能 |
Fig.11 Three schemes of BOD concentration change curve at the intersection of Jin'an River and Guangming Port图11 3种方案晋安河与光明港交汇处BOD浓度变化曲线图(2018年) |
Tab.6 Comparison of the results of different dispatching schemes under the scenario of maintaining 4.2 m in Jinan River-Guangming Port basin表6 晋安河-光明港流域维持4.2 m情景下不同调度方案结果对比 |
目标函数 | 上游流量/(m3·s-1) | 从Ⅳ类水变为Ⅲ类水的时间/min |
---|---|---|
方案三 | 25.0 | 1 584 |
方案五 | 17.5 | 2 184 |
方案七 | 10.0 | 2 328 |
1 |
杨柳,马克明,郭青海.城市化对水体非点源污染的影响[J].环境科学,2004,25(6):32-39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
鲁航线,戴德泉,陈兵.城市排涝河道设计流量的近似计算[J].城市道桥与防洪,2007(12):35-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
董增川,卞戈亚,王船海,等.基于数值模拟的区域水量水质联合调度研究[J].水科学进展,2009,32(4):184-189.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
张帆.福州市内河水质污染原因分析及解决措施[J].中国给水排水,2015,31(14):16-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李燕,李兆富,席庆.HSPF径流模拟参数敏感性分析与模型适用性研究[J].环境科学,2013,34(6):139-145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
罗川,李兆富,席庆,等.HSPF模型水文水质参数敏感性分析[J].农业环境科学学报,2014,33(10):1 995-2 002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
邓立龙,徐海水.Storm实现的模型应用研究[J].广东工业大学学报,2014,31(3):114-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王龙,黄跃飞,王光谦.城市非点源污染模型研究进展[J].环境科学,2010,31(10):2 532-2 540.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
黄清华,张万昌.SWAT模型参数敏感性分析及应用[J].干旱区地理,2010,33(1):8-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
杨军军,高小红,李其江,等.湟水流域SWAT模型构建及参数不确定性分析[J].水土保持研究,2013,20(1):82-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
郑保强,窦明 .水闸调度对河流水质变化的影响分析[J].环境科学与技术,2012,35(2):14-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
邢宝龙,薛联青.基于SCE-UA算法的河网水系水闸调度模拟[J].水资源保护,2013,29(6):26-30.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
梁志宏,金腊华.网河水系水闸群联合水质调度方法与数值分析[J].环境科学与技术,2005,28(12):23-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
徐贵泉,陈长太,唐迎洲.上海市分片水资源调度方案优化[J].水资源保护,2013,29(6):80-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
樊智,陈丹,陈瑞弘,等.东太湖应急水源地水库涵闸优化调度降低水华风险的研究案例[J].净水技术,2017,36(6):30-34.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
张海军,马永法,叶萍,等.基于数值模拟的嘉兴市区河道水质优化调度方案[J].净水技术,2020,39(5):64-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
周川,甄帅,程树辉,等.InfoworksICM软件在河道水环境治理水质可达性分析中的应用[J].市政技术,2019,37(3):213-217.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
龙华,黄绪臣,江浩.通顺河水环境修复调度研究[J].人民长江,2019,50():30-34,79.
增刊2
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
杨卫,许明祥,李瑞清,等.面向生态环境的河湖连通引水调控方案研究[J].武汉大学学报(工学版),2020,53(10):861-868.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
刘非,方正,唐智.ICM模型的水文参数局部灵敏度及其稳定性分析[J].中国农村水利水电,2015(11):73-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
赵琬玉.InfoworksICM排水管网模型在实际中的应用[J].辽宁大学学报(自然科学版),2015,42(2):118-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
张钧,杨文武.水和废水中五日生化需氧量测定全程质量控制[J].环境科学与管理,2011,36(7):139-145.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
吴挺峰,周鳄,崔广柏,等.河网概化密度对河网水量水质模型的影响研究[J].人民黄河,2006,28(3):46-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
叶陈雷,徐宗学,雷晓辉,等.基于InfoWorks的城市水系水文水动力过程耦合模拟:以福州市江北城区及东北部山区为例[J].北京师范大学学报(自然科学版),2019,55(5):609-616.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |