
Numerical Simulation of Hydraulic Characteristics of Three Dimensional Flow Field in Elbow
Xi-wu DAI, Hong-liang SUN, Fei YANG, Chang-zhi JI
Numerical Simulation of Hydraulic Characteristics of Three Dimensional Flow Field in Elbow
To study the hydraulic characteristics such as flow pattern, pressure distribution and local flow cavitation in the elbow, the Realizable k-ε turbulence model is used to simulate three dimensional flow field characteristics. The influence of Reynolds number, shape of transition section, curvature radius ratio and turning angle on the flow field in elbow are studied and analyzed. The results show that with the increase in the Reynolds number, the pressure on the inner side of the elbow decreases gradually and even negative pressure appears, which is prone to cavitation. In the case of the same Reynolds number, it is easier to separate the water flow from the inner side of the elbow by setting a transition section upstream of the elbow inlet, which results in negative pressure on the inner side of the elbow. And the distance from the transition section to the elbow inlet has little effect on the flow field in the elbow. With the decrease in curvature radius ratio, the pressure on the inner side of the elbow decreases. Reducing the turning angle can make the water distribution more uniform in the elbow, which can significantly reduce the negative pressure area in the elbow, and even avoid cavitation phenomenon.
elbow / numerical simulation / hydraulic characteristics / cavitation / three dimensional flow field {{custom_keyword}} /
Tab.1 Statistics of pressure distribution and velocity distribution of elbow表1 弯管压力分布及流速分布统计表 |
断面位置/ (°) | 压力分布/kPa | 流速分布/(m·s-1) | ||||
---|---|---|---|---|---|---|
数值模拟 | 模型试验 | 相对误差/% | 数值模拟 | 模型试验 | 相对误差/% | |
0 | -56.3 | -53.3 | 5.3 | 19.7 | 20.5 | 4.1 |
15 | -66.2 | -63.4 | 4.2 | 20.4 | 21.3 | 4.4 |
30 | -57.1 | -54.3 | 4.9 | 20.4 | 21.1 | 3.4 |
45 | -33.8 | -30.9 | 8.6 | 20.6 | 21.9 | 6.3 |
60 | -9.9 | -9.2 | 7.1 | 20.6 | 21.2 | 2.9 |
75 | 27.87 | 26.10 | 6.10 | 20.70 | 21.40 | 3.40 |
90 | 56.5 | 53.3 | 5.7 | 20.8 | 21.2 | 2.9 |
Fig.5 Pressure nephogram of elbow under different curvature radius ratio图5 不同曲率半径比的弯管压力云图 |
Fig.6 The minimum pressure curve of monitoring section of elbow under different curvature radius ratio图6 不同曲率半径比弯管各截面的最小压力曲线图 |
Fig.9 The minimum pressure curve of monitoring section of elbow under different turning angle图9 不同转角弯管各截面的最小压力曲线图 |
1 |
刘荆辉,胡明.不同雷诺数下90°城门洞形弯道内二次流及动能修正系数的研究[J].水电能源科学,2016,34(5):101-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
梁开洪,曹树良,陈炎,等.入流角对圆截面90°弯管内高雷诺数流动的影响[J].清华大学学报(自然科学版),2009,49(12): 1 971-1 975.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
丁珏,翁培奋.90°弯管内流动的理论模型及流动特性的数值研究[J].计算力学学报,2004,21(3):314-321,329.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
陈文辉,南军虎,陈晴.设有掺气分流墩的溢流表孔优化试验[J].中国农村水利水电,2019(5):155-158,164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
马旭东,杨庆,聂锐华,等.中闸室弧形闸门关闭过程中泄洪洞水力特性研究[J].四川大学学报(工程科学版),2014,46(2):1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
夏毓常.泄水建筑物若干体型初生空化数的合理取值[J].长江科学院院报,2000,17(2) 6-19,13.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
夏毓常,判别泄洪洞反弧段发生空蚀的水力特性标准[J].长江科学院院报,1998,15(2)49-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
戴熙武.U型结构中的水体振荡特性[J].中国农村水利水电,2017(4):154-157.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
戴熙武,盛雨.保水堰后增加明槽段对水体进气及水流流态的影响[J].中国农村水利水电,2017(5):73-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王福军.计算流体动力学分析[M].北京:清华大学出版社,2004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李家星,赵振兴.水力学[M].南京:河海大学出版社,2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
水工设计手册(第2版)第7卷 泄水与过坝建筑物 [S].北京:中国水利水电出版社,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |