
Assessment of Nutrient Distribution in River Ring Using Satellite Remote Sensing
Yong ZHANG, Yu ZHAN, Chuan-hua ZHU, Hao ZHOU, Chen YANG, Qun-lin HU, Guang-song XU, Si-man WANG, Hui WANG
Assessment of Nutrient Distribution in River Ring Using Satellite Remote Sensing
Eutrophication is a major problem in rivers and lakes all over the world. Regular monitoring of water quality and establishment of appropriate models are of great significance in the effective management of water eutrophication. The purpose of this study is to establish a remote sensing retrieval model for water quality and evaluate the nutrient distribution. of the Ring River.The mathematical model has been established by correlation analysis between the reflection value of Landsat-8 satellite images and the water quality values of field sampling.The results indicated that :① The linear model is the best, which can predict the nutrient distribution of the water body, and the fitting degree of the inversion models for total nitrogen, total phosphorus and ammonia nitrogen are 0.823 0, 0.635 5 and 0.792 8, respectively; ② The best correlation between reflection and the measured values are band3 and band 4; ③ From the spatial perspective, the eutrophication level in the north of the Ring River is worse than the south, because it affected by surrounding environment that reside more population, and by the influx from South Fehe River which is polluted more seriously.
Landsat-8 / remote sensing retrieval model / eutrophication / water quality assessment {{custom_keyword}} /
Tab.1 Inversion model of total nitrogen, total phosphorus and ammonia nitrogen concentration表1 总氮、总磷、氨氮浓度反演模型 |
自变量x | 数学模型 | 拟合度R 2 | ||
---|---|---|---|---|
总氮 | 总磷 | 氨氮 | ||
B3 | 线性 | 0.699 8 | 0.642 1 | 0.647 6 |
对数 | 0.728 3 | 0.666 7 | 0.658 5 | |
多项式 | 0.759 2 | 0.698 4 | 0.673 2 | |
B4 | 线性 | 0.631 5 | 0.572 1 | 0.565 5 |
对数 | 0.644 6 | 0.581 5 | 0. 563 9 | |
多项式 | 0.655 1 | 0.591 4 | 0.569 5 | |
B3-b4 | 线性 | 0.697 2 | 0.647 9 | 0.666 6 |
对数 | 0.738 8 | 0.689 2 | 0. 690 9 | |
多项式 | 0.779 0 | 0.740 3 | 0.712 6 | |
1/B3 | 线性 | 0.726 4 | 0.661 4 | 0.640 0 |
对数 | 0.728 3 | 0.666 7 | 0. 658 5 | |
多项式 | 0.738 7 | 0.679 1 | 0.678 8 | |
1/B4 | 线性 | 0.638 5 | 0.572 3 | 0.544 7 |
对数 | 0.644 6 | 0.581 5 | 0. 563 9 | |
多项式 | 0.650 3 | 0.589 8 | 0.581 8 |
Tab.2 Inversion model statistical results表2 反演模型统计结果 |
反演模型 | TN | TP | NH3-N |
---|---|---|---|
类型 | 线性 | 线性 | 线性 |
公式 | y=14 315x-17.34 | y=1 054x-1.2168 | y=8 796.7x-11.244 |
R 2 | 0.823 0 | 0.635 5 | 0.792 8 |
RMSE | 2.501 153 | 0.371 444 | 1.752 716 |
Tab.3 Inversion results of water quality indexes and eutrophication evaluation at each point表3 各点水质指标反演结果与富营养化评价 |
位置点号 | 总氮/(mg·L-1) | 总磷/(mg·L-1) | 氨氮/(mg·L-1) | 评分值M | 评价结果 |
---|---|---|---|---|---|
1 | 0.096 1 | 0.067 0 | 0.116 4 | 33 | 中营养 |
2 | 5.454 6 | 0.461 5 | 0.445 3 | 57 | 富营养 |
3 | 6.800 0 | 0.560 6 | 2.268 0 | 70 | 极富营养 |
4 | 4.025 7 | 0.356 3 | 0.542 8 | 63 | 极富营养 |
5 | 0.849 3 | 0.122 5 | 0.169 1 | 50 | 中-富营养 |
6 | 1.926 5 | 0.201 8 | 0.274 4 | 57 | 富营养 |
7 | 10.728 6 | 0.849 9 | 2.889 0 | 70 | 极富营养 |
8 | 10.402 2 | 0.825 8 | 4.791 9 | 70 | 极富营养 |
9 | 19.649 7 | 1.506 7 | 9.271 3 | 70 | 极富营养 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
黄慧慧,李祥,杜春兰. 我国湖泊富营养化研究情况概述[J]. 中国城市经济, 2011(18):259-260.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
钱彬杰,黄迪,谭晓慧,等. 基于Landsat-8 OLI影像的沭河临沂段氮磷污染物反演[J]. 山西建筑, 2019,45(1):159-161.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
C T, G F, M G, et al. Application of Landsat 8 for Monitoring Impacts of Wastewater Discharge on Coastal Water Quality[J]. Frontiers in Marine Science, 2017,4:1-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
KERRIGAN, ALI. Application of Landsat 8 OLI for monitoring the coastal waters of the US Virgin Islands[J]. International Journal of Remote Sensing, 2020,41(15): 1-27.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
高昕,李继影,景明,等. 基于Landsat8-OLI影像的近年太湖水生植被分布遥感监测[J]. 环境科技, 2020,33(2):49-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陈艳,刘绥华,王堃,等. 基于Landsat卫星影像的草海水质遥感反演及营养状态评价[J]. 水生态学杂志, 2020,41(3):24-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
黄彦歌. 基于实测光谱与Landsat8_OLI影像的珠江口内伶仃洋水质参数遥感反演[D]. 广州:广州大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
曹引,冶运涛,赵红莉,等. 内陆水体水质参数遥感反演集合建模方法[J]. 中国环境科学, 2017,37(10):3 940-3 951.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
BIN H,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
宋挺,石俊哲,刘军志,等. 基于Landsat-8卫星OLI数据的太湖水体蓝藻密度和浊度遥感定量反演研究[J]. 安全与环境工程, 2015,22(6):67-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
谭小琴,罗勇,赵铮,等. 基于高分遥感的河流水质反演研究:以金马河温江段为例[J]. 环境生态学, 2020,2(7):29-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
殷飞. 水体营养状况评价方法研究[J]. 科技创新与应用, 2017(30):99-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |