
Study and Design of Dike Engineering Safety Management System Based on GIS+BIM+IoT Digital Twin
Xiao-kang RAO, Rui MA, Li ZHANG, Zhi-min XU
Study and Design of Dike Engineering Safety Management System Based on GIS+BIM+IoT Digital Twin
In view of the numerous hidden dangers and frequent dangers of dike projects in China, based on the characteristics of dike project construction and the needs of flood prevention and disaster reduction strategies, the design and implementation of a dike project safety management platform based on GIS+BIM+IoT digital twins is studied based on GIS, BIM, and IoT. The integrated digital twin technology is combined with the dike safety management, the digital twin data and model integration and visual expression methods are studied, the dike danger recognition deep learning model is established, and the dike engineering safety management platform based on the GIS+BIM+IoT digital twin is designed. The typical dike section of the Yangtze River main dike is selected for application demonstration. Compared with the problems of lack of information, insufficient accuracy, lagging feedback, and single expression in the past dike project database management or two-dimensional management mode, practice has proved that the safety management platform of dike engineering based on digital twins can realize the integration and interaction of spatial geographic data, BIM model data, and IoT data in various environments for simulation, decision-making, optimization, adjustment and visualization, its risk recognition effect is better than the traditional model. The research and design of the platform can carry out real-time monitoring, diagnosis, analysis, decision-making and prediction of the safety management of the dike project, realizing intelligent operation, precise control and safe operation and maintenance.
GIS+BIM+IoT / digital Twin / dike engineering / danger recognition / deep learning {{custom_keyword}} /
Fig.8 Main water systems KPI information in the Yangtze River Basin图8 长江流域主要水系KPI信息 |
Fig.11 Spatial distribution of sections in typical sections of levees in the Yangtze River Basin图11 长江流域堤防典型断面空间分布 |
Fig.12 Dike risk identification deep learning model parameter input图12 堤防风险识别深度学习模型参数输入 |
Fig.13 Calculation results of the deep learning model of dike risk identification图13 堤防风险识别深度学习模型计算结果 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
郭仁忠,林浩嘉,贺彪,等.面向智慧城市的GIS框架[J].武汉大学学报(信息科学版),2020,45(12):1 829-1 835.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
曹吉昌,王佳仪,陈明琪.基于BIM+GIS+IoT技术的智慧工地系统关键技术研究及应用[J].建设科技,2020():74-77.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
蒋亚东,石焱文.数字孪生技术在水利工程运行管理中的应用[J].科技通报,2019,35(11):5-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
杨李东. 基于Cesium的三维GIS网络服务与BIM集成研究[D].武汉:武汉大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
郭瑞阳. BIM模型和3D GIS的融合技术研究及其实现[D].西安:西安科技大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王耀杰,崔翛龙,甘波.基于数字孪生技术的反恐情报预警体系研究[J/OL].情报杂志,2020[2021-03-12].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
石婷婷,徐建华,张雨浓.数字孪生技术驱动下的智慧图书馆应用场景与体系架构设计[J].情报理论与实践,2021,44(5):149-156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
陈志鼎,梅李萍.基于数字孪生技术的水轮机虚实交互系统设计[J].水电能源科学,2020,38(9):167-170.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
黄锦林,张婷,李嘉琳.堤防工程防洪安全评价中的若干问题[J].中国农村水利水电,2015(4):109-112.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
兰博,关许为,肖庆华.基于FAHP与熵权融合法的堤防工程安全综合评价[J].中国农村水利水电,2019(6):131-133,137.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
韦鹏昌,蒋水华,江先河,等.考虑多破坏模式的堤防工程失事风险率分析[J].武汉大学学报(工学版),2020,53(1):9-15,22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |