
Experimental Research on the Hydraulic Performance of the Pump System Model for Zhuji Pumping Station in Yangtze-to-Huaihe Water Diversion Project
Zhong-jian QIN, Lei XU
Experimental Research on the Hydraulic Performance of the Pump System Model for Zhuji Pumping Station in Yangtze-to-Huaihe Water Diversion Project
In order to improve hydraulic performance and ensure stable operation of Zhuji Pumping Station, an optimization design of the inlet conduit and outlet conduit is completed based on three-dimensional turbulent flow numerical simulation. The experimental research on the hydrodynamic characteristics of optimized pump system model is carried out on a high-precision hydraulic machinery test bed. The experimental results show that the flow velocity of the inlet and outlet conduit of Zhuji Station changes uniformly and the hydraulic loss of the conduit is small, the highest efficiency of the pump system model is 78.33%, and the hydraulic performance is excellent. Compared with the pump section, the optimal operation point of the pump system model is offset by about 2° to the negative angle and the small flow area. Secondly, when the inlet pressure of the pump system model is equal to the value of critical net positive suction head, the larger zones of cavitation bubbles are observed on the pressure side and suction side of the blades. Thirdly, the shaft frequency and blade passing frequency have greater influence on the pressure pulsation amplitude at the inlet and outlet of impeller, and they have less influence on pressure pulsation amplitude at the outlet of the guide vane. In order to avoid resonances, the natural frequency of the pump structure should avoid the pump shaft frequency, blade passing frequency and its frequency multiplication.
Yangtze-to-Huaihe Water Diversion Project / vertical axial-flow pump system / model test / hydraulic performance / cavitation performance / pressure pulsation {{custom_keyword}} /
Tab.1 Comparison of parameters on optimum operating condition between pump system model and pump model表1 泵装置模型与水泵模型TJ04-ZL-06最优工况点参数的比较 |
叶片安放角/(°) | 泵装置模型 | 水泵模型TJ04-ZL-06 | ||||
---|---|---|---|---|---|---|
流量/(L·s-1) | 泵装置扬程/m | 泵装置效率/% | 流量/(L·s-1) | 水泵扬程/m | 水泵效率/% | |
-6 | 256.53 | 3.79 | 78.29 | 299.1 | 3.73 | 85.10 |
-4 | 276.60 | 3.91 | 78.33 | 321.8 | 3.73 | 85.27 |
-2 | 292.54 | 4.12 | 78.26 | 339.7 | 3.90 | 85.46 |
0 | 307.86 | 4.21 | 78.19 | 357.5 | 3.98 | 85.53 |
+2 | 320.01 | 4.59 | 77.93 | 374.8 | 4.21 | 85.84 |
Fig.6 Initial cavitation bubbles on blade under high head conditions图6 高扬程工况叶片初生空化泡 |
Fig.7 Cavitation bubbles on blade when efficiency drops by 1% under high head conditions图7 高扬程工况效率下降1%时叶片空化泡 |
Tab.2 Comparison of initial cavitation value and critical cavitation value under different operating conditions表2 不同工况时初生空化值与临界空化值对比 |
序号 | 流量/(L·s-1) | 净扬程H 装置/m | 初生空化值/m | NPSHC /m | 空化泡位置 |
---|---|---|---|---|---|
1 | 358.32 | 1.87 | 7.85 | 6.98 | 工作面 |
2 | 305.45 | 3.71 | 14.54 | 6.32 | 背面 |
3 | 259.96 | 4.99 | 14.63 | 7.97 | 背面 |
Tab.3 Test results of runaway speed of pump system of Zhuji Pumping Station表3 朱集站泵装置飞逸转速试验结果 |
叶片角度/(°) | 单位飞逸转速/(r·min-1) | 原型飞逸转速/(r·min-1) | 原型飞逸转速与电机额定转速比值 |
---|---|---|---|
-8 | 307 | 291 | 1.74 |
-6 | 312 | 295 | 1.77 |
-4 | 304 | 288 | 1.73 |
-2 | 295 | 279 | 1.68 |
0 | 288 | 273 | 1.64 |
2 | 281 | 266 | 1.60 |
4 | 272 | 258 | 1.54 |
Fig.10 Time domain and frequency domain diagrams of pressure pulsation when pump system head is 1.97 m图10 泵装置扬程1.97 m时压力脉动试验时域和频域图 |
Fig.11 Time domain and frequency domain diagrams of pressure pulsation when pump system head is 3.53 m图11 泵装置扬程3.53 m时压力脉动试验时域和频域图 |
1 |
伍杰,胡兆球,秦钟建. 南水北调东线台儿庄泵站水泵装置优化选型设计[J]. 南水北调与水利科技,2008,6(1):256-259.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张林,李永顺,宗理华,等. 南水北调东线长沟泵站立式轴流泵装置选型与优化设计[J]. 南水北调与水利科技, 2011,9(5):15-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
吴辉明,田雨,廖卫红,等. 基于密云调蓄工程梯级泵站的抽水装置性能分析[J]. 中国农村水利水电, 2016(11):178-182.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
中华人民共和国住房和城乡建设部, 中华人民共和国国家质量监督检验检疫总局. 泵站设计规范:GB 50265-2010 [S]. 北京:中国计划出版社,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
梁金栋,陆林广,徐磊,等. 低扬程立式泵装置流道优化及模型试验研究[J]. 灌溉排水学报, 2011,30(6):73-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
伍杰,秦钟建,陆林广,等. 低扬程泵站直管式出水流道优化设计计算及模型试验研究[J]. 南水北调与水利科技, 2005,3(6):16-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
徐磊,陆林广,陈伟,等. 南水北调工程邳州站竖井贯流泵装置进出水流态分析[J]. 农业工程学报, 2012,28(6):50-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
姜成启,张占,陈方亮,等. 南水北调东线工程睢宁二站导叶式混流泵装置模型试验分析[J]. 水泵技术, 2012(4):15-17, 7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
徐磊,陆林广,陈伟,等. 邳州站竖井式贯流泵装置模型试验研究[J]. 灌溉排水学报, 2012,31(2):120-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
孙丹丹,陈世杰,王斌,等. 睢宁县凌城泵站轴流泵装置模型试验[J]. 中国农村水利水电, 2018(2):126-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
戴景,戴启璠. 南水北调东线淮安二站泵装置模型试验研究[J]. 人民长江, 2016,47(12):95-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
龙俊,王豹,高亮,等. 石港泵站立式轴流泵装置模型试验研究[J]. 江苏水利, 2017(2):12-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
仲子夜,王闻通. 淮安一站立式轴流泵装置模型试验研究[J]. 治淮, 2018(1):23-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
吴新明,张前进,杨晓芬,等. 刘老涧抽水站水泵装置模型试验研究[J]. 水泵技术, 2018(3):33-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
刘宁,汪易森,张纲 .南水北调工程水泵模型同台测试[M].北京:中国水利水电出版社, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
陆林广. 高性能大型低扬程泵装置优化水力设计[M].北京:中国水利水电出版社, 2013.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
扬州大学. 引江济淮工程朱集站泵装置CFD优化设计及流道模型试验研究报告[R]. 江苏扬州:扬州大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
中华人民共和国水利部. 水泵模型及装置模型试验验收试验规程:SL140-2006 [S]. 北京:中国水利水电出版社, 2007.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
关醒凡,伍杰,朱泉荣. 南水北调东线已招标泵站水泵模型装置试验成果及分析[J]. 排灌机械, 2006.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
关醒凡,黄道见,刘厚林,等. 南水北调工程大型轴流泵选型中值得注意的几个问题[J]. 水泵技术, 2002(2):13-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
潘志军,陈鲁,何勇,等. 大型泵站机组飞逸转速的确定及电机强度设计[J]. 浙江水利水电学院学报, 2016,28(4):19-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
白延年. 水轮发电机设计与计算[M]. 北京:机械工业出版社, 1982.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
中华人民共和国国家质量监督检验检疫总局, 中国国家标准化管理委员会. 旋转电机定额和性能:GB 755-2008 [S]. 北京:中国标准出版社, 2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
王凡,钱忠东,郭志伟,等. 可调导叶式轴流泵压力脉动数值分析[J]. 农业机械学报, 2017,48(3):119-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |