
Research on the Relationship between the Combination of Water Quality Indicators and the Accuracy of River Dissolved Oxygen Prediction
Juan HUAN, Bo CHEN, Xian-gen XU, Ming-bao LI, Bei-er YANG, Bing SHI, Qin-lan ZHANG
Research on the Relationship between the Combination of Water Quality Indicators and the Accuracy of River Dissolved Oxygen Prediction
This paper proposes a way to explore the relationship between the combination of water quality indicators and the accuracy of river dissolved oxygen prediction. First, the XGBoost model is used to calculate the water quality index feature importance score, and then based on the greedy rule and the water quality index feature importance score, 8 water quality index combinations are arranged. Finally, the BP neural network is used to predict dissolved oxygen for the 8 water quality index combinations. Experimental results show that pH, water temperature, conductivity, and ammonia nitrogen are the four key indicators that affect the prediction of dissolved oxygen. Among the 8 combinations of water quality indicators arranged, pH, water temperature, conductivity, ammonia nitrogen, turbidity, and CODmn are the most accurate combinations of input indicators for the prediction of dissolved oxygen. Experimental analysis by exhaustively enumerating all water quality indicator combinations proves that the method is effective and feasible with lower time complexity, and can be used to select a combination of input indicators with high accuracy of dissolved oxygen prediction to improve the accuracy of dissolved oxygen prediction.
water quality management / water quality factor combination / dissolved oxygen prediction / greedy rules / feature importance {{custom_keyword}} /
Tab.1 Sample data表1 样本数据 |
时间 | 氨氮/(mg·L-1) | 总磷/(mg·L-1) | 高锰酸盐指数/ (mg·L-1) | 总氮/(mg·L-1) | pH | 水温/℃ | 溶解氧/(mg·L-1) | 电导率/ (μS·cm-1) | 浊度/ntu |
---|---|---|---|---|---|---|---|---|---|
01-01 00∶00 | 1.48 | 0.186 | 3.38 | 4.41 | 7.69 | 16.5 | 8.36 | 492.6 | 84.7 |
01-01 04∶00 | 1.48 | 0.186 | 3.07 | 7.41 | 7.80 | 16.7 | 8.91 | 483.1 | 84.7 |
01-01 08∶00 | 1.29 | 0.329 | 3.20 | 4.79 | 7.71 | 16.5 | 9.49 | 478.4 | 84.7 |
01-01 12∶00 | 1.31 | 0.205 | 3.01 | 3.18 | 7.72 | 16.5 | 9.21 | 473.8 | 84.7 |
01-01 16∶00 | 1.51 | 0.206 | 2.73 | 3.73 | 7.68 | 16.5 | 8.93 | 463.0 | 84.7 |
01-01 20∶00 | 1.52 | 0.192 | 3.16 | 1.63 | 7.68 | 16.5 | 8.79 | 459.6 | 84.7 |
01-02 00∶00 | 1.34 | 0.189 | 2.83 | 1.63 | 7.71 | 16.5 | 9.02 | 467.6 | 84.7 |
01-02 04∶00 | 1.22 | 0.208 | 2.91 | 3.67 | 7.88 | 16.9 | 9.21 | 469.0 | 84.7 |
Tab.2 Water quality index feature importance score表2 水质指标特征重要性分值 |
pH | 水温 | 电导率 | 氨氮 | 浊度 | 高锰酸盐指数 | 总磷 | 总氮 |
---|---|---|---|---|---|---|---|
0.533 2 | 0.134 6 | 0.098 8 | 0.083 3 | 0.062 8 | 0.038 9 | 0.029 4 | 0.018 7 |
Tab.3 Water quality index combination result表3 水质指标组合结果 |
组合 | pH | 水温 | 电导率 | 氨氮 | 浊度 | 高锰酸盐指数 | 总磷 | 总氮 |
---|---|---|---|---|---|---|---|---|
1 | √ | |||||||
2 | √ | √ | ||||||
3 | √ | √ | √ | |||||
4 | √ | √ | √ | √ | ||||
5 | √ | √ | √ | √ | √ | |||
6 | √ | √ | √ | √ | √ | √ | ||
7 | √ | √ | √ | √ | √ | √ | √ | |
8 | √ | √ | √ | √ | √ | √ | √ | √ |
Tab.4 Combination information of 8 groups表4 8个分组的组合信息 |
分组1 | 分组2 | 分组3 | 分组4 | 分组5 | 分组6 | 分组7 | 分组8 | |
---|---|---|---|---|---|---|---|---|
m取值 | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 |
组合个数 | 8 | 28 | 56 | 70 | 56 | 28 | 8 | 1 |
组合号码集合 | 组合1~8 | 组合9~36 | 组合37~92 | 组合93~162 | 组合163~218 | 组合219~246 | 组合247~254 | 组合255 |
我们方法排列的组合号码 | 组合1 | 组合9 | 组合37 | 组合93 | 组合163 | 组合219 | 组合247 | 组合255 |
Tab.5 Ranking results of 255 combinations of water quality indicators under 4 evaluation indicators表5 255种水质指标组合在4种评价指标下的排名结果 |
排名 | MSE | MAE | RMSE | MAPE | ||||
---|---|---|---|---|---|---|---|---|
误差值 | 组合 | 误差值 | 组合 | 误差值 | 组合 | 误差值 | 组合 | |
1 | 0.926 4 | 219 | 0.748 5 | 219 | 0.962 5 | 219 | 14.215 2 | 164 |
2 | 0.994 5 | 93 | 0.773 6 | 93 | 0.997 2 | 93 | 14.350 3 | 219 |
3 | 0.994 9 | 220 | 0.779 4 | 164 | 0.997 4 | 220 | 14.484 2 | 224 |
4 | 1.008 2 | 255 | 0.779 6 | 220 | 1.004 1 | 255 | 14.561 2 | 220 |
5 | 1.013 5 | 249 | 0.781 8 | 224 | 1.006 7 | 249 | 14.567 1 | 93 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘双印,徐龙琴,李道亮,等. 基于时间相似数据的支持向量机水质溶解氧在线预测[J]. 农业工程学报, 2014,30(3):155-162.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
施珮,匡亮,袁永明,等.基于改进极限学习机的水体溶解氧预测方法[J].农业工程学报,2020,36(19):225-232.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
陈英义,程倩倩,方晓敏,等.主成分分析和长短时记忆神经网络预测水产养殖水体溶解氧[J].农业工程学报,2018,34(17):183-191.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
李占山,刘兆赓. 基于 XGBoost 的特征选择算法[J]. 通信学报, 2019,40(10):101-108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
董寅冬,任福继,李春彬. 基于线性核主成分分析和 XGBoost 的脑电情感识别[J]. 光电工程, 2021,48(2).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
孙宝磊,孙暠,张朝能,等. 基于BP神经网络的大气污染物浓度预测[J]. 环境科学学报, 2017,37(5):1 864-1 871.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
陈英义,程倩倩,成艳君,等. 基于GA-BP神经网络的池塘养殖水温短期预测系统[J]. 农业机械学报, 2017,48(8):172-178.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |