
Research on the Temperature Control and Crack Prevention of RCC Gravity Dam of Dagu Hydropower Station During the Construction Period
Guo-shun YAN, Zhi-qiang XIE
Research on the Temperature Control and Crack Prevention of RCC Gravity Dam of Dagu Hydropower Station During the Construction Period
Dagu Hydropower Station is located in the high altitude area with complex climate environment. Temperature control and crack prevention during construction are the key technical problems in the design and construction of the project. In this paper, 5# slope dam section is selected as the research object to simulate the whole process of dam pouring. Considering the concrete creep, the three-dimensional finite element method is used for numerical simulation calculation. The temperature field and stress characteristics of the dam are studied, and the temperature control and crack prevention measures are proposed. The research results show that RCC dam construction in the high altitude area has the characteristics of high risk of cracking on upstream and downstream dam surface when concrete is poured in low temperature seasons and high risk of cracking in internal concrete when concrete is poured in high temperature seasons. After adopting the temperature control and crack prevention measures proposed in this paper, the temperature variation of upstream and downstream dam surface and warehouse surface is significantly reduced under the combined action of external temperature maintenance and internal water cooling. The anti-crack safety degree of concrete on the surface and inside of the dam body can reach 1.8, which meets the engineering design requirements.
high altitude area / RCC grivity dam / simulation calculation {{custom_keyword}} /
表1 混凝土配合比及力学性能参数 |
混凝土 | 抗压强度/MPa | 抗压弹模/GPa | ||||||
---|---|---|---|---|---|---|---|---|
7 d | 28 d | 90 d | 180 d | 7 d | 28 d | 90 d | 180 d | |
三级配碾压C9015 | 8.1 | 13.3 | 21.8 | 25.9 | 10.6 | 15.6 | 19.9 | 21.7 |
二级配碾压C9020 | 11.4 | 19.4 | 29.1 | 32.7 | 14.4 | 18.7 | 23.6 | 24.2 |
三级配常态C9020 | 15.7 | 25.1 | 31.7 | 34.3 | 16.3 | 19.3 | 22.3 | 23.9 |
表2 混凝土热学性能参数 |
混凝土 | 导温系数/(10-3m2·h-1) | 导热系数/[kJ·(m·h·℃)-1] | 比热/[kJ·(kg·℃)-1] | 线胀系数 10-6/℃ | 容重/(kg·m-3) | 泊松比 |
---|---|---|---|---|---|---|
三级配碾压C9015 | 2.46 | 5.58 | 0.938 | 7.9 | 2 420 | 0.167 |
二级配碾压C9020 | 2.62 | 6.06 | 0.964 | 8.0 | 2 400 | 0.167 |
三级配常态C9020 | 2.77 | 6.64 | 1.012 | 8.1 | 2 380 | 0.167 |
表3 混凝土绝热温升 |
混凝土 | 28 d绝热温升/℃ | 拟合最终绝热温升/℃ | 绝热温升 |
---|---|---|---|
三级配碾压C9015 | 15.2 | 17.57 | |
二级配碾压C9020 | 19.8 | 23.08 | |
三级配常态C9020 | 28.6 | 31.98 | |
表4 开裂风险分析计算工况 |
工况设置 | 起浇日期 | 昼夜温差 | 浇筑间歇/d | 浇筑温度/℃ |
---|---|---|---|---|
case 1 | 11-10 | 考虑 | 10 | 13.0 |
case 2 | 11-10 | 不考虑 | 10 | 13.0 |
case 3 | 11-10 | 不考虑 | 20 | 13.0 |
case 4 | 11-10 | 不考虑 | 20 | 10.0 |
case 5 | 06-10 | 考虑 | 10 | 13.0 |
case 6 | 06-10 | 不考虑 | 10 | 13.0 |
case 7 | 06-10 | 不考虑 | 20 | 13.0 |
表5 基础约束区碾压混凝土计算工况 |
工况 | 起浇日期 | 保温措施 | 通水冷却 |
---|---|---|---|
case 1 | 11-10 | 有 | 无 |
case 2 | 11-10 | 有 | 有 |
1 |
范国福. 西藏水电规划综述[J].水力发电,2008,38(7):14-20.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
钮新强. 中国水电工程技术创新实践与新挑战[J]. 人民长江, 2015,46(19):13-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
王松春. 中国碾压混凝土筑坝技术及其发展[J]. 水利水电科技进展, 2001,21(2):16-18,22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李响, 彭松涛, 田德智,等. 相同设计强度下凝灰岩粉对水工混凝土性能的影响[J]. 人民长江, 2019(增刊2).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
龚召雄. 水工混凝土的温控与防裂[M].北京:中国水利水电出版社,1999.5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
朱伯芳 .大体积混凝土的温度应力与温度控制[M].北京:中国电力出版社,2012.8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
华东勘测设计研究院有限公司,西藏大古水电站大体积混凝土温控防裂施工技术要求[R].2018.7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
华东勘测设计研究院有限公司,西藏大古水电站大坝混凝土热力学性能试验检测报告[R].2019.5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
中国水利水电第九工程局有限公司,DBTJ-进度-2019-007 2019年实施性进度计划(已审批)[R].2019.3.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
中国水利水电第九工程局有限公司,西藏大古水电站大坝土建及金属结构安装工程施工总进度计划[R].2018.12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
邱冬梅,熊涛,蔡畅,等. DG水电站大坝工程碾压混凝土仓面设计[J]. 水电与新能源, 2019(12).
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
中华人民共和国能源行业标准,混凝土坝温度控制设计规范 [S].NB/T 35092-2017,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
尚层. 高寒地区碾压混凝土坝上游面保温方案比选[J]. 人民长江, 2016,47(1):79-82.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |