
The Effect of Slot Width Narrowing on Hydraulic Characteristics of Vertical Slot Fishway in Single Tanks
Miao-ling HE, Guang-ning LI, Hai-tao LIU, Yan-cheng HAN, Shuang-ke SUN, Tie-gang ZHENG, Hao-nan ZHANG
The Effect of Slot Width Narrowing on Hydraulic Characteristics of Vertical Slot Fishway in Single Tanks
In view of the adverse influence of fishway vertical slot size error on fish passing efficiency caused by construction technology and other reasons in practical engineering, the physical model tests of a vertical slot narrowing are carried out to study the induced changes of hydraulic characteristics of the fishway. The experimental results show that the water depth of the upstream side of the vertical slot increases and backwater curve is formed when a vertical slot is narrowed. The influence range can cover 5~15 ponds. The water depth of the downstream side of the vertical slot decreases sharply and then recovers quickly, covering only 1~2 ponds. When the slot width reduces by 40% (k=0.6), the maximum rise of the upstream water surface line is 8 cm (in prototype), so its impact on the actual project is limited. The flow velocity at the narrowed vertical slot increases significantly (k=1.0, v=1.1 m/s; k=0.6, v>1.6 m/s), but the velocity of upstream adjacent vertical slot decreases slightly (<10%), and the velocity of downstream adjacent vertical slot has no significant change. The velocity v of the narrowed slot increases in power exponent with the decrease in the narrowing coefficient k, it tends to form velocity barriers. Based on the burst velocity of the fish passing through, the narrow range of vertical slot of the fishway should be controlled within 16% and 29% respectively, for the fishway passing objects of the four major Chinese carps and plateau Schizothorax Species.
vertical slot fishway / slot width / narrowness coefficient / water level profiles / slot velocity {{custom_keyword}} /
Tab.1 Test conditions表1 试验工况 |
鱼道原型运行水深/m | 束窄系数k | 束窄程度/% | 束窄后竖缝原型宽度/cm |
---|---|---|---|
1.48 | 1.0 | 0 | 30 |
0.9 | 10 | 27 | |
0.8 | 20 | 24 | |
0.7 | 30 | 21 | |
0.6 | 40 | 18 | |
0.74 | 1.0 | 0 | 30 |
0.9 | 10 | 27 | |
0.8 | 20 | 24 | |
0.7 | 30 | 21 | |
0.6 | 40 | 18 |
Fig.2 When the operating water depth is 1.48 m, the water depth of the chamber is obtained图2 运行水深为1.48 m时池室水深 |
Tab.2 Variation range and amplitude of fishway chamber water depth under narrow beam表2 竖缝束窄情况下鱼道池室水深变化范围及幅度 |
鱼道原型运行流量/ (m³·s-1) | 束窄系数 k | 上游侧影响 池室/个 | 上游侧原型水面壅高/cm | 下游侧原型影响池室/个 | 下游侧原型水面降落/cm | 出口水深/ m |
---|---|---|---|---|---|---|
0.4 | 1.0 | - | - | - | - | 1.48 |
0.9 | 5 | 2.00 | 1 | -1.0 | ||
0.8 | 13 | 4.00 | 1 | -1.0 | ||
0.7 | 13 | 5.50 | 1 | -2.0 | ||
0.6 | 13 | 8.00 | 1 | -2.5 | ||
0.11 | 1.0 | - | - | - | - | 0.74 |
0.9 | 5 | 1.25 | 0 | -0.10 | ||
0.8 | 6 | 2.75 | 0 | -0.13 | ||
0.7 | 8 | 3.75 | 0 | -0.51 | ||
0.6 | 10 | 5.50 | 0 | -0.85 |
Fig.4 When the operating water depth is 1.48 m, vertical fracture hydraulic parameters图4 运行水深1.48 m竖缝水力参数 |
Fig.6 Relationship between the water depth of adjacent cells and the narrowness coefficient k图6 相邻池室水深与竖缝束窄系数k的关系 |
Fig.7 Relationship between vertical chamber water level difference and the narrowness coefficient k图7 竖缝水位差与宽度束窄系数k的关系 |
Fig.8 Relationship between the ratio |
Tab.3 Test data of hydraulic characteristics of vertical joints and adjacent tanks表3 试验竖缝及相邻池室水力特性试验数据 |
池室 | 束窄系数k | 池室原型水深h/cm | 相邻池室原型水头差Δh/cm | 原型流速v/(m·s-1) | |||
---|---|---|---|---|---|---|---|
运行水深1.48 m | 运行水深0.74 m | 运行水深1.48 m | 运行水深0.74 m | 运行水深1.48 m | 运行水深0.74 m | ||
14 | 1.0 | 148.11 | 74.06 | 6.21 | 6.21 | 1.10 | 1.10 |
0.9 | 149.46 | 75.56 | 6.10 | 5.96 | 1.09 | 1.08 | |
0.8 | 151.98 | 77.06 | 5.90 | 5.73 | 1.08 | 1.06 | |
0.7 | 153.92 | 78.24 | 5.75 | 5.56 | 1.06 | 1.04 | |
0.6 | 155.86 | 80.06 | 5.61 | 5.31 | 1.05 | 1.02 | |
15 | 1.0 | 148.11 | 74.06 | 6.21 | 6.21 | 1.10 | 1.10 |
0.9 | 150.29 | 75.68 | 7.45 | 7.34 | 1.21 | 1.20 | |
0.8 | 152.48 | 77.31 | 9.15 | 8.90 | 1.34 | 1.32 | |
0.7 | 154.67 | 78.93 | 11.62 | 11.15 | 1.51 | 1.48 | |
0.6 | 156.86 | 80.56 | 15.38 | 14.58 | 1.74 | 1.69 | |
16 | 1.0 | 148.05 | 74.01 | 6.22 | 6.22 | 1.10 | 1.10 |
0.9 | 147.12 | 73.92 | 6.29 | 6.23 | 1.11 | 1.11 | |
0.8 | 146.87 | 73.87 | 6.31 | 6.24 | 1.11 | 1.11 | |
0.7 | 146.48 | 73.50 | 6.35 | 6.30 | 1.12 | 1.11 | |
0.6 | 146.18 | 73.15 | 6.37 | 6.36 | 1.12 | 1.12 |
1 |
董志勇,冯玉平,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
董志勇,冯玉平,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
郭维东,孙磊,高宇,等. 同侧竖缝式鱼道流速特性研究[J]. 水力发电学报, 2013,32(2):155-158.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
刘鹄,程文,任杰辉,等. 竖缝与孔口组合式鱼道流动特性模拟研究[J]. 水力发电学报,2017,36(6):38-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
罗小凤,李嘉. 竖缝式鱼道结构及水力特性研究[J]. 长江科学院院报, 2010,27(10):50-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
张超. 竖缝式鱼道过鱼试验与布置体型改进研究[D]. 北京:中国水利水电科学研究院, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
李丹丹,高传彬,李刚,等. 枕头坝一级水电站鱼道布置设计[J]. 人民长江, 2014,45(24):82-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
金弈,康建民,喻卫奇,等. 旬阳水电站的鱼道设计[J]. 水力发电, 2011,37(12):13-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
李天宇,任苇,王琪,等. 多布水电站鱼道布置设计[J]. 西北水电, 2017,27(2):44-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
农静. 长洲水利枢纽工程鱼道设计[J]. 红水河, 2008,27(5):50-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
徐体兵,孙双科. 竖缝式鱼道水流结构的数值模拟[J]. 水利学报, 2009,40(11):1 386-1 391.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张国强,孙双科. 竖缝宽度对竖缝式鱼道水流结构的影响[J]. 水力发电学报, 2012,31(1):151-156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
孙双科,刘海涛. 安谷水电站鱼道工程水力学模型试验研究[R]. 北京: 中国水利水电科学研究院,2012:15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
孙双科,刘海涛. 西藏尼洋河多布水电站工程鱼道及生态放水闸水工模型试验研究[R]. 北京:中国水利水电科学研究院,2013:31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
孙双科,郑铁刚. 西藏雅鲁藏布江加查水电站鱼道模型试验[R]. 北京: 中国水利水电科学研究院,2017:69.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
孙双科,李广宁. 湖北碾盘山水利水电枢纽鱼道工程水力学问题研究[R]. 北京: 中国水利水电科学研究院,2018:63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
孙双科,郑铁刚. 江西省鄱阳湖水利枢纽过鱼设施专项鱼道水力学研究[R]. 北京: 中国水利水电科学研究院,2019:53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
国家能源局. 水电工程过鱼设施设计规范NB/T35054-2015 [S]. 北京: 中国电力出版社, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
涂志英,袁喜,王从锋,等. 亚成体巨须裂腹鱼游泳能力及活动代谢研究[J]. 水生生物学报, 2012,36(4):682-688.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
曹平. 基于鱼类游泳行为特性的鱼道水力学研究[D]. 北京:中国水利水电科学研究院, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |