
Determination and Analysis of Groundwater Ecological Level in Changling County
Wei-meng KAI, Xiu-juan LIANG, Chang-lai XIAO, Zhi-wei QI, Lu JIA
Determination and Analysis of Groundwater Ecological Level in Changling County
In order to determine and analyze the groundwater ecological level in Changling County, a total of Landsat 8 series remote sensing images from 2013 to 2017, buried depth data of 51 groundwater observation wells and 47 phreatic salinity detection data in 2017 are collected. Based on the field investigation and laboratory experiment, the spatial and temporal changes of groundwater level and vegetation coverage in the study area from 2013 to 2017 are determined by using remote sensing technology (ENVI) and geographic information system (GIS).Through the analysis of the vegetation coverage ratio (FVC) and the relationship between the groundwater depth and diving salinity, the appropriate growth of vegetation in the study area of diving level and diving salinity water is determined: the results show that from 2013 to 2017 in the average groundwater level and vegetation cover degree decline year by year, the study area northwest shallow depth of groundwater, vegetation cover degree better; In the central and eastern regions, the groundwater depth is larger and the vegetation coverage degree is poor. When the depth of local groundwater is 3.3~4.5 m and the phreatic salinity is less than 0.85 g/L, the ecological water level and phreatic salinity are suitable for vegetation growth in the study area. When the depth of local water is less than 3m, soil salinization occurs in the surface soil near the lake marsh. When the depth of local water was greater than 8.4m, the phenomenon of soil desertification appeared in some areas of central China.
vegetation coverage ratio / groundwater depth / grid analysis / groundwater ecological water level / phreatic salinity {{custom_keyword}} /
Tab.1 Comparison of determination methods of groundwater ecological level表1 地下水生态水位的确定方法比较 |
方法分类 | 关键参数 | 确定方法 | 应用流域 | 优点 | 缺点 |
---|---|---|---|---|---|
生态调查统计与分析 | 植被盖度、频度、地下水埋深 | ①植被分析图分析法 | 额济纳旗、塔里木河流域、鄂尔多斯 | 方法简单、直观、适用性强 | 成本较高、精度较低 |
②高斯模型法 | |||||
模型计算分析 | 植被指数、地下水埋深毛管水最大上升高度 | ①构建模型计算地下水位与植被参数 | 黑河流域、西辽河流域、科尔沁草原 | 可分析多种时空尺度的生态水文过程、预测趋势 | 所需数据较为庞大,参数多,计算过程复杂 |
②统计地下水位与植被生态间的定量关系 | |||||
③毛管水上升高度理论公式 | |||||
遥感统计分析 | 植被指数、地下水埋深 | 基于遥感数据统计植被指数与地下水位间的定量关系 | 银川平原、内蒙古中西部 | 适用于大尺度研究地下水位与植被生态间的关系 | 结果受遥感数据的时空精度影响较大 |
Tab.2 Comprehensive zoning table of drought index表2 干旱指数综合分带表 |
干旱指数 | <0.5 | 0.5~1 | 1.0~3.0 | 3.0~7.0 | >7.0 |
---|---|---|---|---|---|
水分代 | 十分湿润带 | 湿润带 | 半湿润带 | 半干旱带 | 干旱带 |
Fig.2 Spatial distribution of groundwater depth in the study area图2 研究区地下水埋深空间分布图 |
Tab.3 The variation interval (time and space) of groundwater depth in representative years in the study area表3 研究区代表性年份地下水埋深变化区间(时间、空间)表 |
年份 | 全区地下水埋深 | 西北部埋深 | 西南部埋深 | 中东部埋深 | 出现降落漏斗的乡镇 |
---|---|---|---|---|---|
2013 | 2.08~9.84 | 2.08~4.5 | 3.0~6.5 | 4~9.84 | 长岭镇、八十八乡、流水镇、东岭乡、三县堡乡 |
2015 | 1.95~10.46 | 1.95~5.0 | 4.5~7.0 | 4~10.46 | 长岭镇、八十八乡、三县堡乡、大兴镇 |
2017 | 1.86~10.42 | 1.86~5.0 | 4.5~7.0 | 4~10.42 | 长岭镇、八十八乡、流水镇、三县堡乡 |
1 |
李明乾,肖长来,梁秀娟,等.变化环境下地下水埋深动态特征及驱动因素分析[J].水利水电技术,2018,49(11):1-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
孙颖,梁秀娟,肖长来,等.辽源市地下水水位动态特征分析及预测研究[J].节水灌溉,2016(10):64-67.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
侯金鑫,王德,肖鲁湘,等.地下水埋深对土壤水盐、植被影响研究进展[J].鲁东大学学报(自然科学版),2019,35(2):150-156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
金晓媚,刘金韬,夏薇.柴达木盆地乌图美仁区植被覆盖率变化及其与地下水的关系[J].地学前缘,2014,21(4):100-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
金晓媚,张强,杨春杰.海流兔河流域植被分布与地形地貌及地下水位关系研究[J].地学前缘,2013,20(3):227-233.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
翟家齐,董义阳,祁生林,等.干旱区绿洲地下水生态水位阈值研究进展[J].水文,2021,41(1):7-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
程艳,陈丽,阴俊齐,等.玛纳斯河谷水源地植被生态水位区间研究[J].环境科学与技术,2018,41(2):26-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
张二勇,陶正平,王晓勇,等.基于植被结构分析法的生态植被与地下水关系研究:以鄂尔多斯盆地内蒙古能源基地为例[J].中国地质,2012,39(3):811-817.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
陈敏建,张秋霞,汪勇,等.西辽河平原地下水补给植被的临界埋深[J].水科学进展,2019,30(1):24-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
孙宪春,金晓媚,万力.地下水对银川平原植被生长的影响[J].现代地质,2008(2):321-324.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
王奇,尹华.长岭县水资源利用现状及其可持续发展分析[J].农业与技术,2014,34(5):230-231.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘洪超,吕军,郑国臣,等.长岭县水土保持区划研究[J].中国水土保持,2018(7):34-37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
姜玲玲. 长岭县土地利用/土地覆盖景观格局变化及驱动因素研究[D].长春:吉林大学,2005.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
郭昆明,邱天,宗乐丽 等.河西地区NDVI变化及其对气温和降水的响应[J].测绘科学,2021,46(4):83-89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
刘咏梅,范鸿建,盖星华,等.基于无人机高光谱影像的NDVI估算植被盖度精度分析[J].自然资源遥感,2021,33(3):11-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |