
Failure Analysis and Transformation of the Blade Adjusting Mechanism of Large Hydraulic Full Regulation Vertical Axial-flow Pumps
Yang LI, Fang-kun XIA, Can-hua ZHOU, Wei MIAO, Ming-hao LU
Failure Analysis and Transformation of the Blade Adjusting Mechanism of Large Hydraulic Full Regulation Vertical Axial-flow Pumps
The fourth Jiangdu Pumping Station adopts BYKD type hydraulic blade full regulating device, which has caused many problems, such as oil leakage, burning bearing bush and the aging of accumulator skin. The South-to-North Water Diversion Project is under the condition of full load operation with large flow water delivery, and it does not have the conditions for shutdown and maintenance. Therefore, the emergency scheme for depressurization operation is designed to reduce the amount of oil leakage, extend the interval of oil replenishment, and ensure the operation of main engine. In order to solve the problems of complex oil circuit, large amount of pipeline joints, many oil leakage points and burning of bearing bush caused by centralized oil supply mode of external oil supply system. The transformation of built-in blade adjusting mechanism is designed and implemented, the lower piston into the upper one is changed through the comparison and calculation of piston adjusting force, adjusting rod tension and connecting bolt tension, the transformation points are made clear. In this scheme, micro motor, micro gear oil pump and oil cylinder are integrated into the blade adjusting mechanism, which simplifies the structure of the blade adjusting system, makes the oil circuit independent, enhances the sealing performance and improves the reliability of the blade adjusting mechanism.
hydraulic / blade adjusting mechanism / depressurization operation / built in / axial-flow pump {{custom_keyword}} /
表1 调节力的活塞拉力计算 |
改造对比 | 系统压强/MPa | 外半径R 1/m | 内半径R 2/m | 调节力/kN |
---|---|---|---|---|
改造前 | 3.5 | 0.30 | 0.08 | 919.23 |
改造前 | 4.0 | 0.30 | 0.08 | 1 050.55 |
改造后 | 25.0 | 0.16 | 0.06 | 1 727.88 |
表2 调节杆的抗拉力计算 |
改造对比 | 抗拉强度/MPa | 外半径R 1/m | 内半径R 2/m | 抗拉力/kN |
---|---|---|---|---|
改造前 | 600 | 0.03 | 0.021 5 | 825.14 |
改造后 | 600 | 0.07 | 0.048 0 | 4 893.14 |
1 |
叶渊杰,陈坚,徐艳茹.我国大泵叶片调节机构应用与研究综述[J].中国农村水利水电,2009(8):153-156.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
马晓忠,沙新建,刘刚.大型立式轴流泵叶片调节方式比较[J].排灌机械,2003(5):11-14.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
吴开明. 轴流泵机械式叶片全调节机构特性分析及其应用研究[D].江苏扬州:扬州大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
黄海田,钱福军,魏强林.某泵站机械式叶片调节机构设计缺陷及改进[J].水泵技术,2006(6):43-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
仇宝云.泵站水泵叶片调节方式概论[J],水泵技术,1994(4):29-33.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
黄根. 大型立式水泵机组可靠性研究[D].江苏扬州:扬州大学,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
黄根,仇宝云,黄海田,等.大型立式水泵机组可靠性影响因素分析[J].农业机械,2012(10):109-111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
裴蓓. 大型贯流泵机组可靠性研究[D].江苏扬州:扬州大学,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
姜伟,曹海红,仇宝云,等.大型水泵机组故障特点与原因分析[J].流体机械,2009,37(6):39-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
姜伟. 大型水泵机组维修性研究[D].江苏扬州:扬州大学,2008.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
刘红宇.东深供水改造工程水泵调节机构特点[J].水利水电技术,2003(8):18-19,21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
钟焕权.东深供水改造工程水泵结构选择[J].水利水电技术,2003(8):55-58.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
黄颖,李迎春.东深工程两种大型泵结构与调节机构比较[J].水泵技术,2003(3):14-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
问泽杭,吉庆伟,莫兆祥.泵站水泵叶片调节系统压力油装置的技术改造[J].人民长江,2008(6):92-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
朱玉兵,丁小锋.新型叶片调节机构在江都三站改造工程中的应用[J].河南水利与南水北调,2012(10):22-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
朱玉兵,魏强林,朱建军,等.中置式叶角调节机构在宝应泵站的应用[J].大电机技术,2012(2):46-48,64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
魏军,卜舸,马志华,等.南水北调工程宝应泵站叶片调节方式的选择[J].排灌机械,2006(4):14-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
张仁田,邓东升,朱红耕,等.环保型叶片调节系统的开发与应用[J].排灌机械工程学报,2013,31(11):948-953.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
何效平.全调节水泵调节机构改造技术研究[J], 江淮水利科技,2017(4):43-45.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
戚庆军,尚金桂.立式全调节水力机组叶片调节机构改造技术探讨[J].江淮水利科技,2009(1):27-28.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
项双树.乌江泵站叶片角度调节器应用分析与改进[J].水电站机电技术,2020,43(8):6-8,18,76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
方宝平,陈开金.内置旋转式液压调节器在乌江抽水站改造中的应用[J].江淮水利科技,2014(6):18-19,23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
张鹏.引江济淮工程蜀山泵站水泵叶片全调节机构分析研究[J].江淮水利科技,2017(2):7-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
张勇.内置旋转式水泵叶片角度机械调节器在大型泵站的应用[J].湖南水利水电,2015(3):88,91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
张宇,李扬,孙岚清,等. 压力可调式叶片调节机构[P]. 江苏:CN206988135U,2018-02-09.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |