
Establishment of Hybrid Model and Monitoring Value for Steel Bar Stress of Lining of Hydraulic Tunnel
Zheng LI, Xiao-dong XU, Chong-quan ZHENG, Kang XU, Yong-jun HE
Establishment of Hybrid Model and Monitoring Value for Steel Bar Stress of Lining of Hydraulic Tunnel
Lining of hydraulic tunnel is the main component of tunnels, and it works together with surrounding rocks to support loading, and then enhances the stability of surrounding rock. How to model the performance of the lining of the hydraulic tunnel is worth discussing. By taking a hydraulic tunnel in a water diversion project as an example, a hybrid model of steel bar stress meter is put forward for the lining of hydraulic tunnels based on in-situ data. The model is composed of internal water pressure, temperature and timing component. And internal water pressure is calculated by structure formula, temperature and timing are acquired by statistics. Therefore, measured stress is well reflected by fitting curves, correlation coefficient of R6 and R5 between fitting value and measured value is 0.987 and 0.861 for inner and outer steel bar stress respectively. Furthermore, monitoring warning value for inner and outer steel bar stress is preliminarily established. Above all, hybrid model put forward herein can be used for monitoring the change of lining of hydraulic tunnel, and provide reference for the operation of projects.
hydraulic tunnel / steel bar stress / hybrid model / monitoring value {{custom_keyword}} /
Tab.1 Calculating parameter for steel stress in tunnel表1 隧洞钢筋应力计算参数取值表 |
内水压力p/kPa | 衬砌内半径ri /m | 衬砌外半径r 0 /m | 围岩弹性抗力系数k 0 ①/(kN·m-3) | 钢筋弹性 模量Eg ②/ kPa | 混凝土弹性 模量Eh ②/ kPa | 单位长度内圈钢筋的断面 面积fi /m2 | 单位长度外圈钢筋的断面 面积f 0/m2 | 衬砌内圈钢筋应力σgi /MPa | 衬砌外圈钢筋应力σg 0/MPa |
---|---|---|---|---|---|---|---|---|---|
1 088 | 2 | 2.6 | 5×106 | 2×108 | 2.8×107 | 0.004 9 | 0.004 9 | 34.60 | 28.13 |
Tab.2 Fitting parameter and coefficient of steel bar stress meter of lining of hydraulic tunnel表2 水工隧洞衬砌钢筋计拟合参数及相关性系数 |
仪器编号 | | | | | 相关系数 | 标准差 |
---|---|---|---|---|---|---|
R1 | 44.89 | -0.396 2 | 0.070 42 | -0.233 4 | 0.631 | 0.499 |
R2 | 26.77 | -1.431 0 | 0.123 7 | -0.325 1 | 0.994 | 0.070 |
R5 | 32.86 | -0.590 5 | -0.004 4 | -0.192 0 | 0.861 | 0.164 |
R6 | 45.77 | -1.540 3 | -0.040 9 | 0.101 7 | 0.987 | 0.157 |
R7 | 35.02 | -0.892 8 | -0.047 3 | -0.038 4 | 0.927 | 0.331 |
R8 | 35.12 | -1.490 5 | 0.180 9 | -0.689 8 | 0.972 | 0.344 |
Tab.3 Equation of hybrid model表3 混合模型的表达式 |
测点编号 | 回归方程 | 测点编号 | 回归方程 |
---|---|---|---|
R1 | 16.77-0.396 2 T+ 0.070 42 θ-0.2334 lnθ | R6 | 11.18-1.540 3 T- 0.040 9 θ-0.101 7 lnθ |
R2 | -7.82-1.431 T+ 0.123 7 θ-0.3251 lnθ | R7 | 6.89-0.892 8 T- 0.047 3 θ-0.038 4 lnθ |
R5 | 4.73-0.590 5 T- 0.004 4 θ-0.192 lnθ | R8 | 0.52-1.490 5 T - 0.180 9 θ-0.689 8 lnθ |
Fig.2 Comparison of curves between measured and fitting value of steel bar stress meter R5图2 钢筋计R5应力实测与拟合曲线对比 |
Tab.4 Monitoring and warning value of steel bar stress表4 钢筋应力监控预警指标值 (MPa) |
测点编号 | 预警原则 | 预警最大值 | 预警最小值 |
---|---|---|---|
R1 | | 20.31 | 14.02 |
| 20.81 | 13.52 | |
R2 | | -0.88 | -12.35 |
| -0.81 | -12.42 | |
R5 | | 7.37 | 2.86 |
| 7.53 | 2.70 | |
R6 | | 18.72 | 5.91 |
| 18.88 | 5.76 | |
R7 | | 11.56 | 3.40 |
| 11.89 | 3.07 | |
R8 | | 8.45 | -6.80 |
| 8.80 | -7.14 |
1 |
张玉贤,张继勋,任旭华,等. 考虑围岩稳定性评价的引水隧洞施工过程仿真系统[J]. 水电能源科学, 2020,38(9):109-113.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
胡天明,张继勋,任旭华. 引水隧洞初期支护及其施加时机对围岩稳定性的影响[J]. 水电能源科学, 2020,38(10): 95-98.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
冯艺. 深埋软岩隧洞塌方洞段挤压分析及应对策略[J]. 水电能源科学, 2020,38(11):101-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
吴中如. 水工建筑物安全监控理论及其应用[M]. 北京: 高等教育出版社, 2003.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
张鹏,李艳玲,李雪,等. 土石坝渗流监测统计模型的变量分离方法[J]. 水电能源科学, 2018,36(1):79-81,108.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
章宇璟,郑东健,郑志泰,等. 基于优化果蝇算法和统计模型的混凝土坝变形预测模型及应用[J]. 水电能源科学, 2019,37(2):91-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
赵程,李倩,郑晓红. 考虑体形影响的特高拱坝施工期坝基变形统计模型研究[J]. 水力发电, 2019,45(12):42-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
裴亮,吴震宇,崔萌,等. 高土石坝安全监测位移混合模型研究及应用[J]. 四川大学学报(工程科学版), 2012,44(): 42-47.
增刊1
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
尹尧,方朝阳. 基于强度储备法拟定混凝土坝水平位移监控指标研究[J]. 水电能源科学, 2012,30(8):74-76,203.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
李端有,周元春,甘孝清. 混凝土拱坝多测点确定性位移监控模型研究[J]. 水利学报, 2011,42(8):981-985,994.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
何启,戴波. 基于灰色神经网络-加权马尔可夫链的大坝变形监控模型及预报研究[J]. 中国农村水利水电, 2016(10):146-150,155.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
黄梦婧,杨海浪,叶根苗. 基于实时跟踪的ARIMA大坝安全监控模型[J]. 中国农村水利水电, 2016(12):142-144,150.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
李丹,郭芝韵,朱延涛. 基于ACO-SVR的混凝土坝变形监控模型[J]. 中国农村水利水电, 2017(5):37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
李明军,王均星. 混凝土拱坝位移确定性监控模型研究[J]. 中国农村水利水电, 2019(1):115-119,126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
水利部水利水电规划设计总院. 水工隧洞设计规范: SL279-2016 [S]. 北京: 中国水利水电出版社, 2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
蔡晓鸿,蔡勇平. 水工压力隧洞结构应力计算[M]. 北京:中国水利水电出版社, 2004.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
云南省水利水电勘测设计研究院. 云南省牛栏江-滇池补水工程竣工验收技术鉴定设计工作报告[R]. 云南昆明: 云南省水利水电勘测设计研究院, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
李维树,何沛田,汤登勇. 围岩弹性抗力试验方法及k0参数取值研究[C]. 第八次全国岩石力学与工程学术大会论文集: 科学出版社, 2004:253-258.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
水利部建设与管理司. 土石坝安全监测技术规范: SL551-2012 [S]. 北京: 中国水利水电出版社,2012.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
吕高峰,朱锦杰,吴伟. 基于混合模型的溢流坝参数反演和监控指标拟定[J]. 大坝与安全, 2015(6):37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |