
Evaluation of Water Resources Vulnerability and Obstacle Diagnosis of Water Sources in Plateau Cities Based on DPSIRM Model
Wen-chuang GUAN, Bi-yu RAO, Yuan LU, Jing-yu LI, Xing FAN, Jing WANG
Evaluation of Water Resources Vulnerability and Obstacle Diagnosis of Water Sources in Plateau Cities Based on DPSIRM Model
A water source vulnerability assessment index system based on the driving force-pressure-state- impact-response-management (DPSIRM) model is established, comprehensively considering the economy, society, resources, environment, ecology and other influencing factors of urban water resources in plateau basins. The entropy method is used to weight each evaluation index, and the set pair analysis and obstacle degree model is used to evaluate the water resources vulnerability of the Yunlong Reservoir water resources in Kunming from 2014 to 2019.The results show that the vulnerability of Yunlong Reservoir’s water resource was strongly vulnerable in 2014, and moderately vulnerable from 2015 to 2019. The confidence value of its middle-level vulnerability has been increasing year by year, and the vulnerability of water resources has gradually decreased, indicating that the implemented water resources management policies have achieved results. Judging from the diagnosis results of the obstacles in the various subsystems of the evaluation model, the pressure, status, and influence subsystems’ obstacles played a dominant role from 2014 to 2015, the influence and response subsystem played a leading role from 2016 to 2018, and the pressure and influence subsystem played a leading role in 2019, and subsystem obstacles have a greater impact. It is suggested that the sound development of water resources security should be promoted from the perspective of the system theory, the water quality management and control of water source areas should be strengthened, and the comprehensive development and governance of water resources should be strengthened.
DPSIRM model / water resource vulnerability assessment / entropy weight method / set pair analysis / obstacle diagnosis {{custom_keyword}} /
Tab.1 Index system, meaning and trend of water resource vulnerability assessment in water source area表1 水源地水资源脆弱性评价指标体系、含义及趋向 |
目标层 | 因子层 | 指标层 | 表征含义 | 趋向 |
---|---|---|---|---|
云 龙 水 库 水 资 源 脆 弱 性 评 价 | 驱动力(D) | 人均GDP X 1/元 | 现状经济发展水平 | 逆 |
人口密度X 2/(人·km-2) | 单位面积土地上居住的人口数量 | 正 | ||
城镇化率X 3/% | 人口城镇化速度对用水量的影响 | 逆 | ||
压力(P) | 农业灌溉亩均用水量X 4/m3 | 农业灌溉用水水平 | 正 | |
人均日生活用水量X 5/(L·d-1) | 年生活用水量/(365×人口总数) | 正 | ||
人均生活污水排放量X 6/(L·人-1·d-1) | 人均生活污水排放强度 | 正 | ||
农药施用强度X 7/(kg·hm-2) | 农业生产对水资源质量安全的压力力,用每年每公顷农药施用量反映 | 正 | ||
化肥施用强度X 8/(kg·hm-2 ) | 农业生产对水资源质量安全的压力,用每年每公顷化肥施用量反映 | 正 | ||
万元工业增加值用水量X 9/m3 | 工业生产对水资源带来的压力 | 正 | ||
状态(S) | 丰水期降水量比重(5-10月)X 10/% | 5-10月降水量/年降水量 | 正 | |
水资源开发利用率X 11/% | 区域用水量占水资源总量的比率 | 正 | ||
年降水量X 12/mm | 一年内由天空降落到单位面积水平地面的液态水或固态水的量 | 逆 | ||
影响(I) | 污径比X 13/% | 污水排入量与径流量之比 | 正 | |
水土流失面积比X 14/% | 区域内水土保持状态,用水土流失面积与土地总面积的比值反映 | 正 | ||
入库汇水区水质综合达标率X 15/% | 入库汇水区水质达标的比率 | 逆 | ||
总氮X 16/(mg·L-1) | 水中各种形态无机与有机氮的总量 | 正 | ||
总磷X 17/(mg·L-1) | 水中各种形态磷的总量 | 正 | ||
响应(R) | 森林覆盖率X 18/% | 区域森林面积占土地面积的百分比 | 逆 | |
生态环境用水量比例X 19/% | 生态环境用水量所占比例 | 逆 | ||
污水处理率X 20/% | 污水处理情况 | 逆 | ||
管理(M) | 公众节水意识和水环境保护普及率X 21/% | 公众节水意识和水环境保护普及状态 | 逆 | |
水利工程投资占GDP比例X 22/% | 水利工程总投资/总GDP | 逆 |
Tab.2 Water resources vulnerability assessment grade of water source area表2 水源地水资源脆弱性评价等级 |
目标层 | 因子层 | 指标层 | 权重 | 分项 权重 | 微脆弱 1级 | 轻脆弱 2级 | 中等脆弱 3级 | 强脆弱 4级 | 极脆弱 5级 |
---|---|---|---|---|---|---|---|---|---|
云 龙 水 库 水 资 源 脆 弱 性 评 价 | 驱动力 (D) | X 1 | 0.058 8 | 0.424 1 | >180 000 | 120 000~180 000 | 30 000~120 000 | 12 000~30 000 | 0~12 000 |
X 2 | 0.032 8 | 0.236 8 | 0~50 | 50~100 | 100~200 | 200~300 | >300 | ||
X 3 | 0.047 0 | 0.339 0 | >80 | 60~80 | 40~60 | 20~40 | 0~20 | ||
压力 (P) | X 4 | 0.035 2 | 0.162 5 | 0~200 | 200~300 | 300~400 | 400~500 | >500 | |
X 5 | 0.029 9 | 0.138 3 | 0~120 | 120~150 | 150~180 | 180~220 | 220~350 | ||
X 6 | 0.029 1 | 0.134 2 | 0~10 | 10~25 | 25~40 | 40~55 | >55 | ||
X 7 | 0.043 4 | 0.200 6 | 0~2 | 2~2.5 | 2.5~3.5 | 3.5~4 | >4 | ||
X 8 | 0.036 8 | 0.170 0 | 0~100 | 100~250 | 250~400 | 400~500 | >500 | ||
X 9 | 0.042 1 | 0.194 4 | 0~30 | 30~60 | 60~90 | 90~120 | >120 | ||
状态 (S) | X 10 | 0.031 1 | 0.244 3 | 75~80 | 80~85 | 85~90 | 90~95 | 95~100 | |
X 11 | 0.049 5 | 0.389 3 | 0~10 | 10~20 | 20~30 | 30~40 | >40 | ||
X 12 | 0.046 6 | 0.366 5 | 1 100~1 600 | 800~1 100 | 400~800 | 200~400 | 0~200 | ||
影响(I) | X 13 | 0.046 7 | 0.194 3 | 0~0.1 | 0.1~0.2 | 0.2~0.3 | 0.3~0.4 | >0.4 | |
X 14 | 0.038 1 | 0.158 2 | 0~2 | 2~5 | 5~10 | 10~20 | 20~50 | ||
X 15 | 0.054 9 | 0.228 1 | 96~100 | 86~96 | 70~86 | 60~70 | 0~60 | ||
X 16 | 0.052 9 | 0.220 1 | 0~0.2 | 0.2~0.5 | 0.50~0.75 | 0.75~1.00 | >1 | ||
X 17 | 0.047 9 | 0.199 3 | 0~0.01 | 0.010~0.025 | 0.025~0.050 | 0.050~0.075 | >0.075 | ||
响应(R) | X 18 | 0.030 8 | 0.190 7 | 80~100 | 60~80 | 40~60 | 20~40 | 0~20 | |
X 19 | 0.080 8 | 0.499 9 | 5.5~15.0 | 4.0~5.5 | 2.5~4.0 | 1.0~2.5 | 0~1 | ||
X 20 | 0.050 0 | 0.309 3 | 90~100 | 80~90 | 70~80 | 60~70 | 0~60 | ||
管理(M) | X 21 | 0.058 8 | 0.508 5 | 70~100 | 50~70 | 40~50 | 20~40 | 0~20 | |
X 22 | 0.056 9 | 0.491 5 | 1.0~1.5 | 0.8~1.0 | 0.5~0.8 | 0.2~0.5 | 0~0.2 |
Tab.3 Connection degree of each index in 2019表3 2019年各指标联系度 |
联系度 | B 1 | B 2 (i 1 ) | B 3 (i 2 ) | B 4 (i 3 ) | B 5 | 联系度 | B 1 | B 2 (i 1 ) | B 3 (i 2 ) | B 4 (i 3 ) | B 5 |
---|---|---|---|---|---|---|---|---|---|---|---|
η 1 | 0 | 0 | 0.202 4 | 0.797 6 | 0 | η 12 | 0.386 7 | 0.613 3 | 0 | 0 | 0 |
η 2 | 0 | 0.360 0 | 0.640 0 | 0 | 0 | η 13 | 0 | 0 | 0 | 0 | 1 |
η 3 | 0 | 0 | 0 | 0.930 0 | 0.070 0 | η 14 | 0 | 0 | 0 | 0 | 1 |
η 4 | 0 | 0 | 0.680 0 | 0.320 0 | 0 | η 15 | 0 | 0.069 2 | 0.930 8 | 0 | 0 |
η 5 | 0.733 3 | 0.266 7 | 0 | 0 | 0 | η 16 | 0 | 0 | 0.500 0 | 0.500 0 | 0 |
η 6 | 0 | 0 | 0 | 0 | 1 | η 17 | 0 | 0.325 0 | 0.675 0 | 0 | 0 |
η 7 | 0 | 0 | 0.360 0 | 0.640 0 | 0 | η 18 | 0 | 0.071 0 | 0.929 0 | 0 | 0 |
η 8 | 0 | 0 | 0.440 0 | 0.560 0 | 0 | η 19 | 0 | 0 | 0.766 7 | 0.233 3 | 0 |
η 9 | 0.466 7 | 0.533 3 | 0 | 0 | 0 | η 20 | 0 | 0 | 0 | 0.820 0 | 0.180 0 |
η 10 | 0 | 0.340 0 | 0.660 0 | 0 | 0 | η 21 | 0 | 0 | 0.766 7 | 0.233 3 | 0 |
η 11 | 0 | 0 | 0.458 0 | 0.542 0 | 0 | η 22 | 0 | 0.320 0 | 0.680 0 | 0 | 0 |
Tab.4 Water resources vulnerability comprehensive assessment connection degree (fn ) and its hk value (2014-2019)表4 水源地水资源脆弱性综合评价联系度(fn )及其hk 值(2014-2019) |
年份 | f 1 | f 2 | f 3 | f 4 | f 5 | h 1 | h 2 | h 3 | h 4 | h 5 | 脆弱性 |
---|---|---|---|---|---|---|---|---|---|---|---|
2014 | 0.006 5 | 0.1540 | 0.336 3 | 0.321 2 | 0.182 0 | 0.006 5 | 0.160 5 | 0.496 8 | 0.818 0 | 1 | 强脆弱 |
2015 | 0.062 4 | 0.1778 | 0.285 4 | 0.310 6 | 0.163 7 | 0.062 4 | 0.240 2 | 0.525 7 | 0.836 3 | 1 | 中等脆弱 |
2016 | 0.088 0 | 0.1410 | 0.313 6 | 0.284 1 | 0.173 3 | 0.088 0 | 0.229 0 | 0.542 6 | 0.826 7 | 1 | 中等脆弱 |
2017 | 0.132 5 | 0.1056 | 0.315 1 | 0.295 4 | 0.151 5 | 0.132 5 | 0.238 0 | 0.553 1 | 0.848 5 | 1 | 中等脆弱 |
2018 | 0.122 4 | 0.1265 | 0.337 5 | 0.292 1 | 0.121 5 | 0.122 4 | 0.248 9 | 0.586 5 | 0.878 5 | 1 | 中等脆弱 |
2019 | 0.059 6 | 0.121 1 | 0.416 0 | 0.277 1 | 0.126 1 | 0.059 6 | 0.180 8 | 0.596 8 | 0.873 9 | 1 | 中等脆弱 |
Tab.5 DPSIR level and hk value of water resources vulnerability in water source areas (2014-2019)表5 水源地水资源脆弱性DPSIRM等级及hk 值(2014-2019) |
年份 | 类别 | h 1 | h 2 | h 3 | h 4 | h 5 | 脆弱性 | 年份 | 类别 | h 1 | h 2 | h 3 | h 4 | h 5 | 脆弱性 |
---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|---|
2014 | D | 0 | 0.135 8 | 0.256 3 | 0.840 7 | 1.000 0 | 强脆弱 | 2017 | D | 0 | 0.097 9 | 0.311 9 | 0.935 6 | 1.000 0 | 强脆弱 |
P | 0.018 4 | 0.306 8 | 0.631 4 | 0.883 7 | 1.000 0 | 中等脆弱 | P | 0.087 0 | 0.332 7 | 0.431 8 | 0.857 8 | 1.000 0 | 强脆弱 | ||
S | 0.019 5 | 0.591 5 | 0.824 8 | 1.000 0 | 轻脆弱 | S | 0.258 2 | 0.459 3 | 0.750 1 | 1.000 0 | 中等脆弱 | ||||
I | 0 | 0 | 0.267 5 | 0.647 5 | 1.000 0 | 强脆弱 | I | 0 | 0.045 6 | 0.463 8 | 0.647 5 | 1.000 0 | 强脆弱 | ||
R | 0 | 0 | 0.664 5 | 0.690 7 | 1.000 0 | 中等脆弱 | R | 0.499 9 | 0.499 9 | 0.682 5 | 0.833 0 | 1.000 0 | 中等脆弱 | ||
M | 0 | 0 | 0.501 1 | 1.000 0 | 中等脆弱 | M | 0 | 0.019 7 | 0.857 6 | 1.000 0 | 中等脆弱 | ||||
2015 | D | 0 | 0.120 0 | 0.275 2 | 0.861 0 | 1.000 0 | 强脆弱 | 2018 | D | 0 | 0.091 6 | 0.317 4 | 0.959 3 | 1.000 0 | 强脆弱 |
P | 0.046 1 | 0.319 8 | 0.482 1 | 0.955 3 | 1.000 0 | 强脆弱 | P | 0.129 6 | 0.328 1 | 0.504 2 | 0.865 8 | 1.000 0 | 中等脆弱 | ||
S | 0.285 4 | 0.561 9 | 0.852 1 | 1.000 0 | 轻脆弱 | S | 0.106 8 | 0.434 9 | 0.839 2 | 1.000 0 | 中等脆弱 | ||||
I | 0 | 0.008 8 | 0.387 9 | 0.647 5 | 1.000 0 | 强脆弱 | I | 0 | 0.054 8 | 0.476 0 | 0.647 5 | 1.000 0 | 强脆弱 | ||
R | 0.099 9 | 0.499 9 | 0.690 7 | 0.690 7 | 1.000 0 | 中等脆弱 | R | 0.499 9 | 0.499 9 | 0.686 6 | 0.987 6 | 1.000 0 | 中等脆弱 | ||
M | 0 | 0 | 0.603 9 | 1.000 0 | 中等脆弱 | M | 0 | 0.137 6 | 0.874 5 | 1.000 0 | 中等脆弱 | ||||
2016 | D | 0 | 0.110 5 | 0.290 8 | 0.888 1 | 1.000 0 | 强脆弱 | 2019 | D | 0 | 0.085 3 | 0.322 7 | 0.976 3 | 1.000 0 | 强脆弱 |
P | 0 | 0.303 2 | 0.459 9 | 0.865 8 | 1.000 0 | 强脆弱 | P | 0.192 2 | 0.332 7 | 0.590 2 | 0.865 8 | 1.000 0 | 中等脆弱 | ||
S | 0.056 4 | 0.478 8 | 0.754 4 | 1.000 0 | 中等脆弱 | S | 0.141 7 | 0.449 5 | 0.789 0 | 1.000 0 | 中等脆弱 | ||||
I | 0 | 0.022 8 | 0.451 2 | 0.6475 | 1.000 0 | 强脆弱 | I | 0 | 0.080 6 | 0.537 4 | 0.647 5 | 1.000 0 | 中等脆弱 | ||
R | 0.433 9 | 0.439 1 | 0.690 7 | 0.7278 | 1.000 0 | 中等脆弱 | R | 0 | 0.013 5 | 0.574 0 | 0.944 3 | 1.000 0 | 中等脆弱 | ||
M | 0 | 0 | 0.749 2 | 1.000 0 | 中等脆弱 | M | 0 | 0.157 3 | 0.881 4 | 1.000 0 | 中等脆弱 |
Fig.3 Diagram of the vulnerability status of the water resources subsystem from 2014 to 2019图3 2014-2019年水资源子系统脆弱性状态图 |
Fig.5 Obstacle degree of each subsystem of Yunlong Reservoir's water resource vulnerability from 2014 to 2019图5 2014-2019年云龙水库水资源脆弱性各子系统障碍度 |
Tab.6 The ranking of the main obstacle factors of water resource vulnerability of Yunlong Reservoir表6 云龙水库水资源脆弱性主要障碍因子排序 |
年份 | 第一障碍 | 第二障碍 | 第三障碍 | 第四障碍 | 第五障碍 | |||||
---|---|---|---|---|---|---|---|---|---|---|
指标 | 障碍度 | 指标 | 障碍度 | 指标 | 障碍度 | 指标 | 障碍度 | 指标 | 障碍度 | |
2014 | X 7 | 0.133 | X 14 | 0.116 | X 8 | 0.112 | X 11 | 0.111 | X 4 | 0.107 |
2015 | X 7 | 0.117 | X 11 | 0.104 | X 8 | 0.098 | X 15 | 0.085 | X 16 | 0.077 |
2016 | X 8 | 0.174 | X 15 | 0.099 | X 7 | 0.087 | X 16 | 0.085 | X 17 | 0.084 |
2017 | X 14 | 0.136 | X 15 | 0.099 | X 7 | 0.089 | X 20 | 0.088 | X 13 | 0.085 |
2018 | X 11 | 0.114 | X 15 | 0.081 | X 7 | 0.080 | X 8 | 0.079 | X 14 | 0.073 |
2019 | X 11 | 0.083 | X 14 | 0.082 | X 20 | 0.080 | X 16 | 0.075 | X 17 | 0.072 |
1 |
朱庆华.城市集中式饮用水水源地突发环境事件应急管理研究[D].西安:西安理工大学,2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
曾建军,史正涛,刘新有,等.基于集对分析的云南高原盆地城市水源地脆弱性评价[J].长江流域资源与环境,2014,23(7):1 080-1 086.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
曾建军,史正涛,刘新有,等.高原盆地城市水源地脆弱性评价[J].中国农村水利水电,2013(9):12-15,19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王红梅,黄勇,王丽丽.基于层次分析法对扬州市深层地下水资源评价[J].河北工程大学学报(自然科学版), 2016,33(4):67-71,75.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王静,段顺琼,张连根,等.云南高原城市水源地水资源脆弱性评价研究:以清水海水源地为例[J].中国农村水利水电,2019(11):5-9.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
杨法暄,郑乐,钱会,等.基于DPSIR模型的城市水资源脆弱性评价:以西安市为例[J].水资源与水工程学报,2020,31(1):77-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
职璐爽,薛惠锋.基于熵权法的城市水资源脆弱性研究:以广东省为例[J].水土保持通报,2018,38(5):322-329.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
白庆芹,汪妮,解建仓,等.基于模糊综合评价法的城市河流脆弱性研究[J].水土保持通报,2012,32(1):244-247,256.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
刘瑜洁.基于水足迹的水资源脆弱性评价[D].北京:北京林业大学,2016.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
梁栩,朱丽蓉,叶长青.基于系统动力学模型的南渡江流域水资源脆弱性评价[J].长江科学院院报,2021,38(5):17-24.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
潘争伟,周戎星,王艳华.区域水资源系统脆弱性评价的集对分析与可变模糊集方法[J].中国人口·资源与环境,2016,26():198-202.
增刊2
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
周奉,苏维词,郑群威.基于DPSIR模型的黔中地区水资源脆弱性评价研究[J].节水灌溉,2018(8):59-65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
沈晓梅,姜明栋.基于DPSIRM模型的河长制综合评价指标体系研究[J].人民黄河,2018,40(8):78-84,90.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
郭倩,汪嘉杨,张碧.基于DPSIRM框架的区域水资源承载力综合评价[J].自然资源学报,2017,32(3):484-493.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
汪嘉杨,翟庆伟,郭倩,等.太湖流域水环境承载力评价研究[J].中国环境科学,2017,37(5):1 979-1 987.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
白庆芹,武俊杰,郝守宁.基于DPSIR模型的西藏水资源脆弱性评价[J].人民长江,2019,50(6):98-103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
常乐冉.区域水资源脆弱性评价方法研究[D].济南:山东大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
秦趣,梁振民,刘安乐,等.基于DPSIRM框架模型的高原湿地生态安全评价[J].冰川冻土, 2020,42(4):1 363-1 375.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
纪静怡,方红远,徐志欢.基于组合赋权云模型的水资源管理综合评价[J].中国农村水利水电,2020(12):40-45,56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
朱玲燕,苏维词.基于熵权法及灰色关联模型的水资源承载力研究[J].水资源与水工程学报,2014,25(5):233-236.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
张涛.基于集对分析的不确定多属性决策算法研究[D].重庆:重庆大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
沈时兴,金菊良,宋松柏,等.水文水资源集对分析的理论基础探讨[J].合肥工业大学学报(自然科学版), 2013,36(12):1 481-1 488.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
李少朋,赵衡,王富强,等.基于AHP-TOPSIS模型的江苏省水资源承载力评价[J].水资源保护,2021,37(3):20-25.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
焦士兴,陈林芳,王安周,等.河南省农业水资源脆弱性时空特征及障碍度诊断[J].农业现代化研究,2020,41(2):312-320.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |