
An Analysis of Nitrate Sources in Deep Lake Based on Nitrogen and Oxygen Isotopes
Ya-li WU, Xiao-qi KANG, Yuan NIU, Wei LAN, Hui YU
An Analysis of Nitrate Sources in Deep Lake Based on Nitrogen and Oxygen Isotopes
The effect of nitrate loading on water has been a hot issue at home and abroad. Clarifying the main sources of nitrate load in water is the basis for accurately formulating nitrogen pollution control and emission reduction strategies. Taking Qianxia Lake for example, this paper analyzes the variations of nitrate and its main sources qualitatively by monitoring the hydro-chemical characteristics and nitrogen and oxygen isotope composition of nitrate of lakes, with the addition of the nitrogen and oxygen isotope composition of various sources (precipitation, domestic sewage, fertilizer, sediment and surrounding soil) in this study. On this basis, the stable isotope model MixSIAR is used to quantify the different contributions of every nitrate source. The results show that: ① the downstream of Qianxia Lake is greatly affected by livestock manure or urban domestic water, and its sources of nitrate are mainly from the organic nitrogen affected by human activities with high stable nitrogen isotope flowing to water by nitrification; ② the nitrate for the lake from surrounding soil, domestic sewage, fertilizer, sediment, and precipitation accounts for 87%±9.7%, 9.0%±5.9%, 2.5%±1.5%, 1.2%±0.8%, 0.3%±0.4%, respectively. The transfer and transformation process of nitrate in Qianxia Lake is mainly nitrification under the effect of human activities. Therefore, the nitrate produced contains a higher nitrogen stable isotope value. This study can provide a scientific basis for nitrogen cycle, transfer and transformation in deep lakes.
nitrate sources / δ15N-NO3 - and δ18O-NO3 - / Bayesian isotope mixing model / Qianxia Lake {{custom_keyword}} /
Tab.1 The statistical characteristic values of δ15N, δ18O and water quality indexes in QianXia Lake表1 千峡湖水体氮氧同位素及水质指标统计特征值续表1 千峡湖水体氮氧同位素及水质指标统计特征值 |
点位 | 统计特征值 | DO/(mg·L-1) | TN/(mg·L-1) | NH4 +/(mg·L-1) | NO3 -/(mg·L-1) | Cl-/(mg·L-1) | δ15N/‰ | δ18O/‰ |
---|---|---|---|---|---|---|---|---|
W1 | 平均值 | 8.00 | 0.26 | 0.05 | 0.21 | 1.20 | 2.44 | 7.75 |
标准差 | 1.06 | 0.10 | 0.02 | 0.11 | 0.10 | 0.37 | 0.20 | |
变异系数 | 0.14 | 0.39 | 0.44 | 0.53 | 0.10 | 0.15 | 0.03 | |
W2 | 平均值 | 7.54 | 0.33 | 0.05 | 0.28 | 1.24 | 1.23 | 7.66 |
标准差 | 1.33 | 0.12 | 0.02 | 0.09 | 0.09 | 0.37 | 0.20 | |
变异系数 | 0.19 | 0.39 | 0.43 | 0.35 | 0.08 | 0.30 | 0.03 | |
W3 | 平均值 | 7.44 | 0.34 | 0.06 | 0.28 | 1.22 | 4.18 | 10.99 |
标准差 | 1.26 | 0.15 | 0.02 | 0.10 | 0.10 | 0.37 | 0.21 | |
变异系数 | 0.18 | 0.47 | 0.31 | 0.39 | 0.10 | 0.09 | 0.02 | |
W4 | 平均值 | 7.70 | 0.27 | 0.05 | 0.22 | 1.18 | 2.53 | 3.67 |
标准差 | 1.02 | 0.12 | 0.02 | 0.10 | 0.09 | 0.37 | 0.20 | |
变异系数 | 0.14 | 0.47 | 0.32 | 0.49 | 0.10 | 0.15 | 0.06 | |
W5 | 平均值 | 7.59 | 0.33 | 0.06 | 0.26 | 1.12 | 2.14 | 4.50 |
标准差 | 0.96 | 0.12 | 0.02 | 0.12 | 0.06 | 0.37 | 0.20 | |
变异系数 | 0.13 | 0.40 | 0.37 | 0.48 | 0.07 | 0.17 | 0.05 | |
W6 | 平均值 | 7.74 | 0.35 | 0.05 | 0.30 | 1.07 | 3.69 | 4.39 |
标准差 | 1.15 | 0.15 | 0.01 | 0.13 | 0.15 | 0.37 | 0.20 | |
变异系数 | 0.16 | 0.46 | 0.23 | 0.47 | 0.17 | 0.10 | 0.05 | |
W7 | 平均值 | 7.49 | 0.28 | 0.05 | 0.23 | 1.05 | 3.82 | 4.68 |
标准差 | 1.31 | 0.13 | 0.01 | 0.11 | 0.08 | 0.37 | 0.20 | |
变异系数 | 0.19 | 0.49 | 0.23 | 0.51 | 0.10 | 0.10 | 0.04 | |
W8 | 平均值 | 7.74 | 0.27 | 0.02 | 0.24 | 1.20 | 1.83 | 4.09 |
标准差 | 1.07 | 0.09 | 0.02 | 0.11 | 0.26 | 0.37 | 0.20 | |
变异系数 | 0.15 | 0.37 | 0.33 | 0.52 | 0.26 | 0.20 | 0.05 | |
W9 | 平均值 | 7.60 | 0.31 | 0.05 | 0.24 | 1.05 | 1.98 | 3.38 |
标准差 | 0.89 | 0.09 | 0.01 | 0.09 | 0.10 | 0.37 | 0.20 | |
变异系数 | 0.12 | 0.31 | 0.27 | 0.39 | 0.11 | 0.19 | 0.06 | |
W10 | 平均值 | 7.59 | 0.43 | 0.11 | 0.29 | 1.24 | 4.86 | 3.88 |
标准差 | 1.42 | 0.15 | 0.06 | 0.12 | 0.09 | 0.37 | 0.20 | |
变异系数 | 0.20 | 0.38 | 0.59 | 0.45 | 0.09 | 0.08 | 0.05 | |
W11 | 平均值 | 7.68 | 0.30 | 0.05 | 0.25 | 1.08 | 3.50 | 5.98 |
标准差 | 1.03 | 0.09 | 0.05 | 0.07 | 0.05 | 0.37 | 0.20 | |
变异系数 | 0.14 | 0.32 | 0.57 | 0.32 | 0.06 | 0.10 | 0.03 | |
W12 | 平均值 | 7.84 | 0.36 | 0.07 | 0.26 | 1.14 | 6.05 | 7.61 |
标准差 | 1.22 | 0.17 | 0.03 | 0.11 | 0.13 | 0.37 | 0.20 | |
变异系数 | 0.17 | 0.49 | 0.47 | 0.48 | 0.14 | 0.06 | 0.03 | |
W13 | 平均值 | 7.67 | 0.34 | 0.07 | 0.25 | 1.29 | 5.07 | 5.50 |
标准差 | 1.37 | 0.13 | 0.03 | 0.12 | 0.33 | 0.37 | 0.20 | |
变异系数 | 0.19 | 0.41 | 0.42 | 0.52 | 0.31 | 0.07 | 0.04 | |
W14 | 平均值 | 7.72 | 0.35 | 0.08 | 0.25 | 1.16 | 4.58 | 5.05 |
标准差 | 1.51 | 0.08 | 0.04 | 0.10 | 0.13 | 0.37 | 0.20 | |
变异系数 | 0.21 | 0.25 | 0.55 | 0.44 | 0.14 | 0.08 | 0.04 | |
W15 | 平均值 | 7.66 | 0.39 | 0.07 | 0.28 | 1.13 | 5.41 | 4.32 |
标准差 | 1.53 | 0.16 | 0.03 | 0.12 | 0.06 | 0.37 | 0.20 | |
变异系数 | 0.21 | 0.42 | 0.38 | 0.47 | 0.07 | 0.07 | 0.05 | |
W16 | 平均值 | 8.15 | 0.63 | 0.16 | 0.39 | 1.23 | 16.18 | 6.82 |
标准差 | 1.52 | 0.30 | 0.09 | 0.18 | 0.35 | 0.37 | 0.20 | |
变异系数 | 0.20 | 0.51 | 0.58 | 0.49 | 0.35 | 0.02 | 0.03 | |
W17 | 平均值 | 7.98 | 0.53 | 0.11 | 0.42 | 0.96 | 3.75 | 2.58 |
标准差 | 1.80 | 0.30 | 0.08 | 0.23 | 0.20 | 0.37 | 0.20 | |
变异系数 | 0.24 | 0.60 | 0.55 | 0.59 | 0.26 | 0.10 | 0.08 |
Tab.2 Characteristic end-member isotope values used in isotope mixing models表2 稳定同位素模型输入的各污染源同位素值等参数 |
各污染源 | δ15N(mean) | SD | δ18O(mean) | SD | n |
---|---|---|---|---|---|
生活污水 | 19.22 | 3.29 | 6.16 | 1.58 | 4 |
降水 | -6.16 | 2.52 | 76.69 | 1.12 | 2 |
肥料 | -14.22 | 11.73 | 21.98 | 0.76 | 4 |
沉积物 | 2.54 | 2.39 | 35.24 | 8.05 | 5 |
土壤 | 3.76 | 3.24 | 7.67 | 10.02 | 12 |
1 |
徐志伟,张心昱,于贵瑞,等. 中国水体硝酸盐氮氧双稳定同位素溯源研究进展[J]. 环境科学, 2014,35(8):3 230-3 238.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
余辉,徐军,牛远,等. 流域环境评估与稳定性同位素-从水循环到生态系统[M]. 北京:中国环境出版集团, 2018.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
朱世丹,张飞,张海威,等. 新疆艾比湖主要入湖河流同位素及水化学特征的季节变化[J]. 湖泊科学, 2018,30(6):1 707-1 721.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
金赞芳,张文辽,郑奇,等. 氮氧同位素联合稳定同位素模型解析水源地氮源[J]. 环境科学, 2018,39(5):2 039-2 047.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
殷超,杨海全,陈敬安,等. 基于水化学和氮氧同位素的贵州草海丰水期水体硝酸盐来源辨析[J]. 湖泊科学, 2020,32(4):989-998.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
金赞芳,岑佳蓉,胡宇铭,等. 千岛湖水体氮的垂向分布特征及来源解析[J]. 中国环境科学, 2019,39(8):3 441-3 449.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
商良忠,陈丽燕,何加洪. 景宁县千峡湖森林彩改造技术的思考[J]. 安徽农学通报, 2015,21(22):101-104.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
徐春英,李玉中,郝卫平,等. 反硝化细菌法结合痕量气体分析仪/同位素比质谱仪分析水体硝酸盐氮同位素组成[J]. 分析化学, 2012(9):1 360-1 365.
STOCK B, SEMMENS B. MixSIAR GUI User Manual, version 3.1.10[Z]. 2018. https://cran.r-project.org/web/packages/MixSIAR/index.html.5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
杨丽萍. 浙江省两个典型流域水体污染特征及污染源解析研究[D]. 杭州:浙江大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
黄剑锋,张依章,张远,等. 太湖西苕溪流域地表水、地下水硝酸盐污染特征及来源[J]. 环境科学研究, 2012,25(11):1 229-1 235.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
李春华,叶春,高尚超,等. 关于在长江经济带布局以水质改善为目标的流域生态缓冲体系的思考[J]. 环境科学研究, 2020,33(5):146-153.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |