
Characteristics Deconstruction and Evolution Factors of Cross-regional Water Transfer Network
Teng QIN
Characteristics Deconstruction and Evolution Factors of Cross-regional Water Transfer Network
Based on the data of multi-regional input-output table and water resources bulletins in the year of 2007 and 2017, the relationships related to water transfers between different regions are identified. Then the characteristics of cross-regional water transfer network and its determinants can be revealed with social network analysis and ecological network analysis. The results show that relationships related to regional water transfers have developed into network topology with a “core-periphery structure”. However, the stability and transmission efficiency still need to be improved. Jiangsu and Guangdong occupy the center of the production-based and consumption-based regional water transfer networks. Xinjiang, Heilongjiang, Hunan and Jiangxi play a more producer role with a high out-degree; Guangdong, Chongqing, Zhejiang and Shaanxi play a more consumer role with a high in-degree; Jiangsu, Anhui and Henan with play a more transit role a high betweenness degree. QAP analysis shows that geographical location, close economic linkage and high openness are all beneficial to the formation and evolution of cross-regional water transfer network.
water resources / cross-regional transfer / multi-regional input-output analysis / network analysis {{custom_keyword}} /
Tab.1 Overall features of network structure表1 整体网络结构特征 |
年份 | 实际 关系数 | 理论 关系数 | 网络 密度 | 网络关联度 | 网络 等级度 | 网络 效率 | 平均 距离 | 循环 指数 |
---|---|---|---|---|---|---|---|---|
2007 | 269 | 870 | 0.309 | 0.805 | 0.25 | 0.542 | 1.736 | 0.277 |
2017 | 298 | 870 | 0.343 | 0.778 | 0.204 | 0.433 | 1.638 | 0.299 |
Fig.4 TOP1 network of cross-regional water transfers on the consumption side in 2007 and 2017图4 2007及2017年消费侧出口水资源转移TOP1网络 |
Tab.2 Network centrality of cross-regional water transfers表2 跨区域水资源转移网络中心度 |
省份 | 度数中心度 | 中介中心度 | ||||
---|---|---|---|---|---|---|
点出度 | 点入度 | 中心度 | 排序 | 中心度 | 排序 | |
北京 | 0 | 14 | 48.276 | 13 | 0 | 18 |
天津 | 0 | 10 | 34.483 | 20 | 0 | 19 |
河北 | 11 | 11 | 37.931 | 17 | 0.226 | 12 |
山西 | 2 | 6 | 20.690 | 24 | 0 | 20 |
内蒙古 | 15 | 10 | 51.724 | 10 | 0.452 | 10 |
辽宁 | 6 | 6 | 20.690 | 25 | 0 | 21 |
吉林 | 7 | 7 | 24.138 | 23 | 0.125 | 14 |
黑龙江 | 25 | 8 | 86.207 | 3 | 1.181 | 7 |
上海 | 4 | 11 | 37.931 | 18 | 0 | 22 |
江苏 | 26 | 19 | 89.655 | 1 | 14.881 | 1 |
浙江 | 12 | 20 | 68.966 | 9 | 4.122 | 5 |
安徽 | 25 | 18 | 86.207 | 4 | 10.538 | 2 |
福建 | 9 | 4 | 31.034 | 22 | 0 | 23 |
江西 | 15 | 4 | 51.724 | 11 | 0 | 24 |
山东 | 7 | 10 | 34.483 | 21 | 0.025 | 16 |
河南 | 20 | 21 | 72.414 | 6 | 9.404 | 3 |
湖北 | 14 | 9 | 48.276 | 14 | 0.439 | 11 |
湖南 | 21 | 11 | 72.414 | 7 | 1.395 | 6 |
广东 | 9 | 25 | 86.207 | 5 | 8.950 | 4 |
广西 | 14 | 5 | 48.276 | 15 | 0 | 25 |
海南 | 1 | 0 | 3.448 | 28 | 0 | 26 |
重庆 | 2 | 21 | 72.414 | 8 | 0.515 | 9 |
四川 | 11 | 8 | 37.931 | 19 | 0.173 | 13 |
贵州 | 2 | 4 | 13.793 | 27 | 0 | 27 |
云南 | 3 | 14 | 48.276 | 16 | 0.014 | 17 |
陕西 | 5 | 15 | 51.724 | 12 | 0.067 | 15 |
甘肃 | 6 | 2 | 20.690 | 26 | 0 | 28 |
青海 | 0 | 0 | 0 | 29 | 0 | 29 |
宁夏 | 0 | 0 | 0 | 30 | 0 | 30 |
新疆 | 26 | 5 | 89.655 | 2 | 0.695 | 8 |
均值 | 9.933 | 9.933 | 46.322 | 1.733 |
Tab.3 Correlation analysis of spatial correlation factors of cross-regional water transfers表3 水资源转移网络影响因素的相关性分析 |
变量 | 实际相关系数 | 显著水平 | 系数均值 | 标准差 | 最小值 | 最大值 | P | P |
---|---|---|---|---|---|---|---|---|
G | 0.069 | 0.044 | -0.000 1 | 0.039 | -0.163 | 0.145 | 0.044 | 0.972 |
PG | 0.105 | 0.066 | 0.000 4 | 0.068 | -0.222 | 0.249 | 0.066 | 0.942 |
OPEN | 0.020 9 | 0.048 | 0.000 2 | 0.047 | -0.158 | 0.152 | 0.048 | 0.987 |
TECH | -0.047 | 0.241 | -0.000 3 | 0.061 | -0.221 | 0.2 | 0.782 | 0.241 |
INFORM | 0.037 | 0.300 | 0.000 5 | 0.065 2 | -0.221 | 0.25 | 0.300 | 0.727 |
Tab.4 Regression analysis of influencing factors of cross-regional water transfers表4 水资源转移网络影响因素的QAP回归分析 |
变量 | 非标准化回归系数 | 标准化回归系数 | 显著性概率 | 概率A | 概率B |
---|---|---|---|---|---|
截距项 | 0.371 | 0 | 0 | 0 | 0 |
G | 0.103 | 0.077 | 0.021 | 0.021 | 0.979 |
PG | 0.096 | 0.100 | 0.057 | 0.056 | 0.944 |
OPEN | 0.018 | 0.019 | 0.028 | 0.028 | 0.972 |
TECH | -0.043 | 0.048 | 0.218 | 0.218 | 0.782 |
INFORM | 0.027 | 0.028 | 0.360 | 0.360 | 0.640 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
陈清怡,千庆兰,姚作林. 广东省城市创新发展水平及其网络结构演化[J]. 经济地理, 2021,41(4):38-47.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王悦斌,林常青,李媛,等. 基于多流域生态网络模型的用水系统结构特征演化分析[J]. 中国环境科学, 2018,38(2):755-765.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
谈箐. 基于生态网络分析法的淮河流域用水系统演变特征分析[J]. 水利科技与经济, 2021,27(4):62-66.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
阎晓东,孙才志. 中国省际水足迹空间转移网络特征研究[J]. 长江流域资源与环境, 2021,30(3):602-613.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
孙克,聂坚. 基于引力模型的省域灰水足迹空间关联网络分析[J]. 水资源保护, 2019,35(6):29-36.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
徐绪堪,赵毅,韦庆明. 中国省际水足迹强度的空间网络结构及其成因研究[J]. 统计与决策, 2019,35(7):84-88.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
孙才志,马奇飞. 中国省际水资源绿色效率空间关联网络研究[J]. 地理研究, 2020, 39(1):53-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
秦腾,佟金萍,章恒全. 环境约束下中国省际水资源效率空间关联网络构建及演化因素[J]. 中国人口·资源与环境, 2020,30(12):84-94.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
孙才志,郑靖伟. 基于MRIO与SNA的中国水资源空间转移网络分析[J]. 水资源保护, 2020,36(1):9-17.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
冯青,吴志彬,徐玖平. 基于投入产出规模的省际碳排放配额分配研究[J]. 中国管理科学, 2021,29(6):1-10.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
穆献中,朱雪婷. 城市能源代谢生态网络分析研究进展[J]. 生态学报, 2019,39(12):4 223-4 232.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
张涛,武金爽. 中国文化产业绿色发展效率的空间网络结构及影响机理研究[J]. 地理科学, 2021,41(4):580-587.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
杜金霜,付晶莹,郝蒙蒙. 基于生态网络效用的昭通市“三生空间”碳代谢分析[J]. 自然资源学报, 2021, 36(5):1 208-1 223.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
陈明华,王山,刘文斐,等. 非线性视角下中国城市房价关联效应测度与分析[J]. 中国软科学, 2020(10):96-106.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
邵海琴, 王兆峰. 中国交通碳排放效率的空间关联网络结构及其影响因素[J]. 中国人口·资源与环境, 2021,31(4):32-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
王庆喜, 徐维祥. 多维距离下中国省际贸易空间面板互动模型分析[J]. 中国工业经济, 2014(3):31-43.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
孙才志,刘淑彬. 基于MRIO模型的中国省(市)区水足迹测度及空间转移格局[J]. 自然资源学报, 2019,34(5):945-956.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |