
An Analysis of Influencing Factors on the Potential of Denitrification of Flooded Sediment to Dissipate Non-point Source Nitrogen
Zhen-qi SHI, Kai FANG, Jia-hua ZHOU, Wen-juan ZHANG, Dong-li SHE
An Analysis of Influencing Factors on the Potential of Denitrification of Flooded Sediment to Dissipate Non-point Source Nitrogen
The microbial-dominated denitrification process is the main way to absorb the loss of non-point source nitrogen in flooded sediments. At present, there are plentiful researches on the influence of environmental factors on the denitrification process, but the law of denitrification under the influence of periphyton is still unclear. Through the submerged sediment culture experiment, the nitrogen denitrification rate, and total of 17 indicators of the overlying water-peripheral organisms-sediment system influencing denitrification process are measured, and the PLSR model is used to explore the influence of various factors on the denitrification and absorption of non-point source nitrogen in the sediment, and to find out the main control factor and avoid the problem of collinearity between factors. The results show that the pH, NH4+-N, NO3--N, DOC in the overlying water and the CHI in the periphyton are the main influencing factors in the denitrification process of the sediment. More attention is paid to the research on periphyton. The water-soil interface can demonstrate the mechanism of nitrogen denitrification loss process and provide a theoretical basis for non-point source pollution control.
dissipate non-point source nitrogen / denitrification / PLSR / influencing factors / flooded sediment {{custom_keyword}} /
Tab.1 Statistical summary of denitrification loss and associated factors表1 反硝化速率和环境影响因子数据特征 |
分类 | 变量 | 最小值 | 最大值 | 平均值 | 标准差 | 变异系数 |
---|---|---|---|---|---|---|
反硝化速率 | DL/[N2,μmol·(m2·h)-1] | 93.10 | 380.42 | 185.26 | 63.80 | 0.34 |
上覆水 | DO/(mg·L-1) | 3.29 | 12.27 | 7.99 | 1.94 | 0.24 |
pH | 7.00 | 8.78 | 8.00 | 0.36 | 0.04 | |
DOC/(mg·L-1) | 4.33 | 12.90 | 8.13 | 1.77 | 0.22 | |
NO3 --N/(mg·L-1) | 10.00 | 144.00 | 73.07 | 32.89 | 0.45 | |
NH4 +-N/(mg·L-1) | 5.50 | 95.40 | 38.40 | 23.40 | 0.60 | |
TN(W)/(mg·L-1) | 88.00 | 364.00 | 223.49 | 77.56 | 0.35 | |
周丛生物 | BIO/(mg·cm-2) | 2.30 | 16.17 | 8.78 | 3.67 | 0.42 |
PSE/(copies·μg-1) | 0.16×103 | 8.30×103 | 1.98×103 | 2.14×103 | 1.08×103 | |
CHI/(mg·g-1) | 0.07 | 25.71 | 7.71 | 6.10 | 0.79 | |
底泥土壤 | NIRK/(copies·μg-1) | 0.52×105 | 47.63×105 | 10.07×105 | 15.23×105 | 1.51×105 |
NOSZ/(copies·μg-1) | 2.58×105 | 389.33×105 | 119.47×105 | 117.61×105 | 0.98×105 | |
AOA/(copies·μg-1) | 0.03×105 | 1.05×105 | 0.25×105 | 0.30×105 | 1.13×105 | |
AOB/(copies·μg-1) | 0.47×105 | 10.48×105 | 4.23×105 | 2.78×105 | 0.66×105 | |
NO3-N/(mg·g-1) | 0.04 | 0.15 | 0.07 | 0.02 | 0.29 | |
NH4-N/(mg·g-1) | 0.10 | 0.64 | 0.22 | 0.12 | 0.51 | |
TN(S)/(mg·g-1) | 0.15 | 0.54 | 0.26 | 0.09 | 0.36 |
Tab.2 PLSR model of Denitrification Loss表2 反硝化速率变异的PLSR模型 |
因变量Y | R 2 | Q 2 | 成分 | 变异性解释百分比% | 变异性解释累计百分比% | Q 2 cum |
---|---|---|---|---|---|---|
反硝化速率 | 0.87 | 0.76 | 1 | 75.86 | 75.86 | 0.74 |
2 | 10.97 | 86.83 | 0.76 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
陈曦,崔莉凤,杜兵,等. 温度和pH值对厌氧氨氧化微生物活性的影响分析 [J]. 北京工商大学学报(自然科学版), 2006(3):5-8.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
吴国平,高孟宁,唐骏,等. 自然生物膜对面源污水中氮磷去除的研究进展 [J]. 生态与农村环境学报, 2019(7):817-825.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王书伟,颜晓元,单军,等. 利用膜进样质谱法测定不同氮肥用量下反硝化氮素损失 [J]. 土壤, 2018,50(4):664-673.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
M-LNGUYEN,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
ZHE P,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
王逢武,刘玮,万娟娟,等. 周丛生物存在下不同水层氧化还原带的分布及其与微生物的关联 [J]. 环境科学, 2015,36(11): 4 043-4 050.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |