
Experimental Research on the External Characteristics of the Full-flow Pump in Longkungou North Rainwater Drainage Pumping Station
LIU Jian-feng, LU Wei-gang, ZHOU Bin-nan, SUN Chen-guang, XIA Hui
Experimental Research on the External Characteristics of the Full-flow Pump in Longkungou North Rainwater Drainage Pumping Station
The full-flow pump is a new mechatronics product combining tubular pump technology and submersible motor technology and the purpose of this paper is to test the hydraulic performance of the full-flow pump device and understand the real operation status of the pumping station. To study the external characteristics of the full-flow pump device with model test, this paper takes Longkungou North rainwater drainage pumping station as an example and then analyzes and evaluates relevant data. When the blade angle is fixed at +2 degrees, the maximum efficiency of the prototype device is 65.25%, when the flow rate is 15.35 m3/s and the head is 2.16 m. Within the range of test head, the NPSH of Longkungou North rainwater drainage pumping station is sufficient, which will not cause cavitation hazards. The runaway speed corresponding to the maximum head is 216 r/min, which is 1.49 times of the rated speed. Under the condition of original design head, the operation efficiency of the pump device is low, which does not meet the designed efficiency requirements of the pump station and it’s verified that the energy characteristics, cavitation characteristics and runaway speed characteristics corresponding to the design head of the pump device can meet the requirements after the clearance is adjusted between the impeller shell and the impeller outer ring and reducing the precision error of model test. The size of full-flow pump is relatively small and it has a compact structure and excellent hydraulic performance, which has a good prospect and can be adopted in low head and large flow pump stations.
full-flow pump / pump unit / model test / external characteristics / low head and large flow pumping station {{custom_keyword}} /
Fig.12 Comparison of characteristics before and after adjustment of clearance accuracy error of prototype device of full tubular pump图12 全贯流泵原型装置间隙误差调整前后特性对比图 |
Tab.1 Comparison of operation data of prototype pump under design head condition表1 设计扬程工况下原型泵运行数据对比表 |
设计扬程(1.73 m) | 叶轮外圈与外壳之间2 mm间隙 | 叶轮外圈与外壳之间1 mm间隙 |
---|---|---|
流量/(m3·s-1) | 17.28 | 17.28 |
装置效率/% | 65.25 | 70.01 |
临界汽蚀余量/m | 5.28 | 5.54 |
飞逸转速与额定转速比值 | 1.29 | 1.25 |
1 |
张重阳,刘超,冯旭松, 等. 全贯流泵流动特性数值模拟和性能预测[J]. 南水北调与水利科技, 2019,17(4):185-192.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
刘超. 轴流泵系统技术创新与发展分析[J]. 农业机械学报, 2015,46(6):49-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
古智生. 全贯流潜水电泵的开发与应用[J]. 水利水电技术, 2010,41(12):54-57.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
曹良军,刘长益,钟跃凡. 全贯流潜水电泵的应用及出水端自耦式安装的稳定性分析[J]. 湖南水利水电, 2015(2):87-91.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
李亚楠. 双向全贯流式抽水装置研究[D]. 江苏扬州:扬州大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王海. 全贯流泵抽水装置与半贯流泵抽水装置的综合比较研究[D]. 江苏扬州:扬州大学, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
朱红耕,戴龙洋,张仁田,等. 新型竖井贯流泵装置研发与数值分析[J].排灌机械工程学报, 2011,29(5):418-422.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
徐磊,陆林广,陈伟,等. 竖井贯流泵装置水力设计方案比较研究[J]. 水力发电学报, 2011,30(5):207-215.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
张仁田,朱红耕,姚林碧. 竖井贯流泵不同出水流道型式的对比研究[J]. 水力发电学报, 2014,33(1):197-201.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
陆伟刚, 张旭. 特低扬程竖井贯流泵装置水力特性试验研究[J]. 灌溉排水学报, 2012,31(6):103-106+125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
孙丹丹,陈世杰,王斌,等. 睢宁县凌城泵站轴流泵装置模型试验[J]. 中国农村水利水电, 2018(2):126-130.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
汤方平,刘超,王国强,等. 平面S形流道双向轴流泵装置水力模型研究[J]. 农业机械学报, 2003(6):50-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
SL 140-2006, 水泵模型及装置模型验收试验规程 [S].
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
张松,钱军,高慧,等. 黄金坝泵站平面S形贯流泵装置物理模型试验分析[J]. 中国农村水利水电, 2019(6):121-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
石丽建,付玲玲,刘超,等. 冲角对轴流泵叶轮水力性能的影响[J]. 灌溉排水学报, 2019,38(4):55-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
陆伟刚,周秉南,夏辉,等. 慎江泵站特低扬程大流量竖井贯流泵装置外特性试验研究[J]. 灌溉排水学报, 2021,40(4):52-59.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
孙壮壮,张友明,夏鹤鹏,等. 不同工况下轴流泵转子径向力及其压力脉动分析[J]. 灌溉排水学报, 2019,38(1):122-128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
戴景,戴启璠. 南水北调东线淮安二站泵装置模型试验研究[J]. 人民长江, 2016, 47(12): 95-98+103.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
谢传流,汤方平,刘超, 等. 大型立式轴流泵装置叶轮选型模型试验分析[J]. 农业机械学报, 2017(6): 94-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
刘润根,马晓忠,詹磊. 黄家坝30°斜式轴流泵装置模型试验研究[J]. 中国农村水利水电, 2016(2): 109-111.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
陆伟刚,严登丰,甄峰. 水泵及泵装置效率换算方法[J]. 排灌机械工程学报, 2012, 30(6): 677-682+689.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
方进,晏清洪. 滁河四级站混流泵装置模型试验研究[J]. 中国农村水利水电, 2017(10): 213-217+222
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
杨帆,杨德志,王忠伟, 等. 泵装置飞逸特性试验研究与分析[J]. 水泵技术, 2010(6): 1-4.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
潘志军,陈鲁,何勇. 大型泵站机组飞逸转速的确定及电机强度设计[J]. 浙江水利水电学院学报, 2016,28(4):19-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
陆伟刚,孙晨光,夏辉,等.通吕运河泵站竖井贯流泵装置综合性能分析[J].扬州大学学报(自然科学版),2020,23(6):59-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
甄峰,谢超.乌江泵站水力模型选择及泵装置模型试验研究[J].治淮,2020(8):20-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |