
Evaluation of Water Resources Utilization in the Taihu Basin from the Perspective of Water Footprint
LIU Can-hui, JIN Wen-long, SUN Ying-jie, CHEN Kang-li
Evaluation of Water Resources Utilization in the Taihu Basin from the Perspective of Water Footprint
In order to fully understand the current situation of water resources utilization in the cities in the Taihu Basin under the background of the most stringent water resources management system, this paper summarizes the existing problems, and explores the future development direction of sustainable water resources. Based on the perspective of water footprint, it studies the utilization of water resources in the Taihu Basin and eight cities including Shanghai in the basin from 2015 to 2019,combined with the LMDI(Lograrithmic Mean Divisia Index method) model to analyze the driving effect of population,wealth, and technical level on the changing in water footprint,and build an evaluation index system for the sustainable use of water resources.The results show that the total water footprint of the Taihu Basin has been declining in the past five years,the industrial and agricultural water footprints have been declining,and the domestic water footprint has been rising.Among the cities,Shanghai has the largest total water footprint and Jiaxing has the smallest.Technical level factors have the greatest impact on water footprint change,and population factors have the least impact.The degree of affluence and population are positively driven,and the technical level is negatively driven.The water footprint structure of the Taihu Basin is relatively stable,Shanghai and Suzhou are highly dependent on external water resources. The overall water footprint benefit continues to increase,with significant differences among cities in each indicator;the ecological security situation of the water footprint is not optimistic,but it has shown a continuous improvement in the past three years.The research results indicate that in the future, cities in the Taihu Basin should increase investment in water-saving technologies, techniques and equipment when formulating and adjusting water resources management policies,promote the efficient development and utilization of agricultural and industrial water,strengthen the management of domestic water quotas,and pay attention to the pressure of population growth on water resources,continuously improve the utilization rate of water resources,and realize the sustainable use of regional water resources.
Taihu Basin / water footprint / LMDI / driving factors / water resources utilization {{custom_keyword}} /
Tab.1 Virtual water content of various agricultural and livestock products表1 各种农畜产品虚拟水含量 (m3/kg) |
产品 | 粮食 | 油料 | 水果 | 猪肉 | 牛肉 | 羊肉 | 禽肉 | 禽蛋 | 淡水产品 |
---|---|---|---|---|---|---|---|---|---|
虚拟水含量 | 1.10 | 2.10 | 0.83 | 2.21 | 12.56 | 5.20 | 3.65 | 3.55 | 5.00 |
Tab.2 Evaluation index system of water resources utilization in Taihu Basin表2 太湖流域水资源利用评价指标体系 |
评价结构 | 评价指标 | 核算公式 | 基本含义 | |
---|---|---|---|---|
水足迹结构 | 水资源自给率 | (WI /W)×100% | 区域对本地水资源使用程度 | |
水资源进口依赖度 | (WE /W)×100% | 区域对外部水资源的依赖程度 | ||
水足迹效益 | 内部效益指标 | 万吨水足迹人口密度 | P/W | 水足迹支撑人口水平 |
水足迹经济效益 | G/W | 水资源利用经济效率 | ||
水足迹土地密度 | W/A,A为土地面积 | 水足迹能承载的土地面积大小 | ||
水资源负载指数 | | 水资源利用水平与人口和经济发展之间的关系 | ||
外部效益指标 | 水足迹净贸易量 | Wex -WE | 水资源贸易情况 | |
水资源贡献率 | (Wex -WE )/W A | 对其他区域的水资源贡献程度 | ||
水资源生态安全 | 水资源匮乏指标 | (W/W A)×100% | 水资源紧缺程度 | |
水资源压力指数 | (WI +Wex )/W A×100% | 对可利用水资源量作用强度 |
Tab.3 The Taihu Basin water footprint and average water footprint of 8 cities from 2015 to 2019表3 太湖流域2015—2019年水足迹及8市平均水足迹 (亿m3) |
年份/城市 | 农业水足迹 | 工业水足迹 | 生活水足迹 | 生态水足迹 | 出口水足迹 | 进口水足迹 | 总水足迹 | |
---|---|---|---|---|---|---|---|---|
太湖流域历年水足迹 | 2015年 | 228.09 | 135.30 | 59.21 | 4.57 | 123.08 | 95.23 | 399.32 |
2016年 | 213.17 | 137.43 | 59.14 | 4.06 | 114.57 | 89.57 | 388.79 | |
2017年 | 202.68 | 119.10 | 62.26 | 4.32 | 110.81 | 92.05 | 369.60 | |
2018年 | 196.43 | 118.36 | 62.20 | 4.28 | 108.30 | 92.16 | 365.13 | |
2019年 | 188.82 | 115.02 | 63.62 | 3.48 | 98.69 | 80.28 | 352.53 | |
各城市平均水足迹 | 上海 | 24.85 | 35.55 | 24.51 | 0.82 | 32.76 | 46.20 | 99.18 |
苏州 | 24.83 | 28.34 | 8.95 | 0.36 | 38.09 | 26.03 | 50.43 | |
无锡 | 16.34 | 19.33 | 4.78 | 0.22 | 10.71 | 6.83 | 36.79 | |
常州 | 22.54 | 10.34 | 4.52 | 0.83 | 5.95 | 2.05 | 34.33 | |
镇江 | 22.90 | 15.11 | 1.43 | 0.41 | 3.47 | 1.64 | 38.01 | |
杭州 | 31.60 | 9.41 | 11.03 | 0.86 | 8.78 | 3.83 | 47.95 | |
嘉兴 | 27.55 | 4.36 | 3.51 | 0.36 | 7.54 | 2.76 | 30.99 | |
湖州 | 35.23 | 2.59 | 2.57 | 0.28 | 3.80 | 0.53 | 37.40 |
Tab.4 Decomposition effect of driving factors of water footprint in Taihu Basin from 2016 to 2019表4 太湖流域2016-2019年水足迹驱动因素分解效应 |
年份 | 人口数量 | 富裕程度 | 技术水平 | 合计 |
---|---|---|---|---|
2016年 | 1.97 | 33.84 | -46.34 | -10.53 |
2017年 | 9.82 | 165.22 | -234.50 | -59.45 |
2018年 | 18.82 | 287.28 | -408.68 | -102.58 |
2019年 | 37.41 | 507.38 | -731.96 | -187.17 |
均值 | 17.00 | 248.43 | -355.37 | -89.93 |
比例/% | 2.74 | 40.02 | 57.24 | 100.00 |
Tab.5 Water footprint structure of the Taihu Basin from 2015 to 2019表 5 太湖流域2015-2019年水足迹结构 |
年份 | 总外部足迹/亿m³ | 总内部水足迹/亿m³ | 水资源自给率/% | 进口依赖度/% |
---|---|---|---|---|
2015 | 95.23 | 304.09 | 76.15 | 23.85 |
2016 | 89.57 | 299.23 | 76.96 | 23.04 |
2017 | 92.05 | 277.55 | 75.09 | 24.91 |
2018 | 92.16 | 272.97 | 74.76 | 25.24 |
2019 | 80.28 | 272.25 | 77.23 | 22.77 |
Tab.6 Water footprint benefits of the Taihu Basin from 2015 to 2019表6 太湖流域2015-2019年水足迹效益 |
年份 | 内部效益 | 外部效益 | ||||
---|---|---|---|---|---|---|
水足迹经济效益/(元·m-3) | 水足迹土地密度/(万m3·km-2) | 万吨水足迹人口密度/(人·万t-1) | 水资源负载指数 | 水资源贡献率/% | 水足迹净贸易量/亿m3 | |
2015 | 182.32 | 73.37 | 16.46 | 19.15 | 4.81 | 27.86 |
2016 | 204.72 | 71.44 | 16.99 | 17.87 | 3.84 | 25.00 |
2017 | 238.03 | 67.91 | 17.98 | 30.76 | 5.35 | 18.76 |
2018 | 262.86 | 67.09 | 18.35 | 28.25 | 4.39 | 16.14 |
2019 | 289.03 | 64.78 | 19.23 | 28.93 | 4.60 | 18.41 |
Fig.4 Average internal water footprint benefits of cities in the Taihu Basin from 2015 to 2019图4 太湖流域各市2015-2019年平均内部水足迹效益 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
马静,汪党献,来海亮,等.中国区域水足迹的估算[J].资源科学,2005(5):96-100.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王艳阳,王会肖,张昕.基于投入产出表的中国水足迹走势分析[J].生态学报,2013,33(11):3 488-3 498.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
王晓萌,黄凯,杨顺顺,等.中国产业部门水足迹演变及其影响因素分析[J].自然资源学报,2014,29(12):2 114-2 126.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
韩玉,杨晓琳,陈源泉,等.基于水足迹的河北省水资源安全评价[J].中国生态农业学报,2013,21(8):1 031-1 038.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
邓晓军,谢世友,王新华.重庆市2004年的水足迹分析[J].长江流域资源与环境,2007(5):593-597.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
宋永永,米文宝,杨丽娜.基于水足迹理论的宁夏水资源安全评价[J].中国农村水利水电,2015(5):58-62.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
潘文俊,曹文志,王飞飞,等.基于水足迹理论的九龙江流域水资源评价[J].资源科学,2012,34(10):1 905-1 912.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
聂志萍,吴梦芝,马海良.基于LMDI和脱钩理论的我国生活用水影响因素研究[J].水利经济,2019,37(5):11-15+26+77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
奚旭,孙才志,赵良仕.基于IPAT-LMDI的中国水足迹变化驱动力分析[J].水利经济,2014,32(5):1-5+71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
吴昊,张兴奇,都金康.基于水足迹理论与LMDI模型的贵州省水资源利用评价[J].中国岩溶,2019,38(5):696-703.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
戚瑞,耿涌,朱庆华.基于水足迹理论的区域水资源利用评价[J].自然资源学报,2011,26(3):486-495.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
周玲玲,王琳,余静.基于水足迹理论的水资源可持续利用评价体系:以即墨市为例[J].资源科学,2014,36(5):913-921.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
刘民士,刘晓双,侯兰功.基于水足迹理论的安徽省水资源评价[J].长江流域资源与环境,2014,23(2):220-224.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
黄晶,宋振伟,陈阜.北京市水足迹及农业用水结构变化特征[J].生态学报,2010,30(23):6 546-6 554.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
余灏哲,韩美.基于水足迹的山东省水资源可持续利用时空分析[J].自然资源学报,2017,32(3):474-483.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
孙才志,陈栓,赵良仕.基于ESDA的中国省际水足迹强度的空间关联格局分析[J].自然资源学报,2013,28(4):571-582.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
商庆凯,阴柯欣,米文宝.基于水足迹理论的青海省水资源利用评价[J].干旱区资源与环境,2020,34(5):70-77.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
韩杰.基于水足迹的河西地区农作物需水变化影响因素及水资源优化配置研究[D]兰州:.兰州大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
ANG BW,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
张军,周冬梅,张仁陟.黑河流域2004-2010年水足迹和水资源承载力动态特征分析[J].中国沙漠,2012,32(6):1 779-1 785.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
张岳.中国水资源与可持续发展[J].中国农村水利水电,1998(5):3-6.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
雒新萍,刘晓洁.中国典型农作物需水量及生产水足迹区域差异[J].节水灌溉,2020(1):88-93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |