
Research on the Calculation Method of Water Resistance Ratio for River Related Construction Projects
XU Wei, HU Xiao-zhang, ZOU Hua-zhi, PEI Shao-feng
Research on the Calculation Method of Water Resistance Ratio for River Related Construction Projects
Rivers carry water resources and are channels for material and energy transfer. The management of river-related construction projects is an important part of ensuring the flood control, drainage, and stable river conditions of rivers. The water resistance ratio is an important control indicator for river-related construction project management, and the study of its calculation method is of great significance for controlling the impact of river-related construction projects. The traditional water resistance ratio, also known as the structural water resistance ratio, refers to the proportion of the cross section area of the river occupied by a river-related construction project at a certain design flood level. The article reveals the inadequacy of the current structural water resistance ratio in reflecting the degree of obstruction of water flow dynamics propagation in river related construction projects. The structural water resistance ratio weakens the flood control impact of river-related construction projects near the main channel of the river, and over-reflects the flood control impact of river-related construction projects near the shallow shoals of the river. On the basis of the structural water resistance ratio, combined with the hydrological properties such as water depth and flow velocity of the river, the article proposes a hydraulic water resistance ratio. The hydraulic resistance ratio refers to the proportion of the flow of the cross section occupied by the river-related construction project to the total flow of the entire river section at a certain design flood level. Compared with the structural water resistance ratio, the hydraulic water resistance ratio more effectively reflects the degree of obstruction of water flow dynamics propagation in river related construction projects, and the calculation method is simple, which can compensate for the shortcomings of the structural water resistance ratio. This article suggests incorporating the hydraulic water resistance ratio into the control indicators of river related construction projects, effectively controlling the degree of impact of river related construction projects on river flood discharge.
river-related construction projects / river channels / sructural water blocking / hydraulic water blocking {{custom_keyword}} /
Tab.1 Characteristics of water blocking and flood controleffects of different pier layout schemes表1 不同桥墩布置方案阻水及防洪影响特征表 |
方案 | 结构阻水比/% | 水力阻水比/% | 壅水幅度超0.004 m范围/m | 流速影响幅度超0.005 m/s范围/m |
---|---|---|---|---|
方案1 | 4.28 | 4.46 | 桥墩位置至上游686 | 桥墩位置上游155至下游1 014 |
方案2 | 3.76 | 3.60 | 桥墩位置至上游202 | 桥墩位置上游143至下游749 |
1 |
黄培志, 李敏达. 深圳市涉河建设项目防洪评价[J]. 中国农村水利水电, 2015(3):106-109.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
陈文龙, 王 华, 彭 瑜. 珠江河口涉水建设项目防洪综合影响研究[J]. 人民珠江, 2014,35(4):4-7.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
广东省市场监督管理局, 广东省水利厅. 河道管理范围内建设项目技术规程:DB44/T 1661-2021 [S]. 广东:网络发布, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
中华人民共和国水利部. 河道管理范围内建设项目防洪评价报告编制导则:SL/T 808-2021 [S]. 北京:中国标准出版社, 2021.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
丁 伟, 唐洪武, 戴文鸿, 等. 涉河桥梁阻水影响因素研究[J]. 水利水运工程学报, 2011(4):52-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
张大茹. 基于Mike21FM的山区小流域涉水工程防洪影响研究[D]. 北京: 中国水利水电科学研究院, 2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
余忠宾. 基于MIKE21 FM的非正交型跨河桥梁阻水分析[J]. 黑龙江水利科技, 2018,46(5): 46-49+117.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
魏 炜. 基于数值仿真的涉河桥墩阻水效应研究[J]. 西部交通科技, 2021(7):60-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
徐林春, 郑国栋, 黄 东, 等. 桥梁工程阻水比与河道水位关系初探[J]. 中国农村水利水电, 2011(4):45-49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
拾 兵, 贺如泓, 于诰方. 斜交桥渡的壅水及设计计算[J]. 水科学进展, 2001,12(2):201-205.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
李 彬. 几种特殊情况的桥梁阻水比探讨[J]. 人民珠江, 2016,37(12):82-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李 彬. 桥梁对河流阻水影响的一个综合判别指标[J]. 华北水利水电大学学报(自然科学版), 2017,38(2):68-71.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
何 用, 何贞俊, 徐峰俊, 等. 珠江河口大型涉水工程方案优化研究: 以港珠澳大桥工程为例[J]. 泥沙研究, 2015,40(3):69-73.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
张庭荣, 黄武平, 李虎成. 基于墩桩阻力的跨河桥梁阻水比计算分析[J]. 广东水利水电, 2018(2):15-18.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
寇晓梅, 高 繁, 张乃畅, 等. 基于MIKE3三维水动力模型的鱼道集鱼区流场特征分析[J]. 人民黄河, 2024, 46(S1):73-74.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
郭维维, 许红师, 胡孜军. MIKE3软件模拟温差异重流的网格划分比较研究[J]. 中国农村水利水电, 2021(6):25-29+37.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |