
GRACE Downscaling Reconstruction Data Analysis of Drought in Chinese Mainland from 2002 to 2022
ZHANG Dong, LI Qiong, SU Yong, AN Zhang-yuan
GRACE Downscaling Reconstruction Data Analysis of Drought in Chinese Mainland from 2002 to 2022
The low spatial resolution of the time-varying gravity field model data provided by GRACE and its successor satellite GRACE Follow-On limits its application in high-resolution long-term drought monitoring. In order to solve this problem, the XGBoost machine learning method was used to carry out downscale reconstruction of the changes in terrestrial water storage in mainland China from 2002 to 2022, and the GRACE TWSA with a resolution of 0.1 ° was generated for nine major basins in China. The modeling effects of different basins were compared. Then, the GRACE-DSI drought index based on GRACE data was compared with the traditional drought index scPDSI and SPEI, and the spatial distribution characteristics of different grades of drought in nine major basins in China were analyzed. Finally, the drought events in nine major basins in China and the spatial distribution of drought in 2022 were monitored.The results show that except for the inland river, the performance of the other eight watershed downscaling reconstruction models is better, and the consistency between GRACE TWSA and NOAH TWSA is further improved after downscaling reconstruction. The correlation between GRACE-DSI after downscaling reconstruction and scPDSI and SPEI drought index was also significantly enhanced. The frequency of drought in the middle and lower reaches of the Yellow River Basin, the Haihe River Basin and the Pearl River Basin is high and mainly light drought. Similarly, the frequency of drought in the southern part of the Songliao River Basin is also high, but it is mainly characterized by moderate drought and light drought. In addition, the proportion of light drought and moderate drought in the nine major basins is close, and the proportion of heavy drought and extreme drought is different. The proportion of heavy drought in the Huaihe River Basin and the Songliao River Basin is the highest, which is 14 % and 13.4 % respectively. The proportion of extreme drought in the Yangtze River Basin is the highest, which is 16.5 %, while the proportion of extreme drought in the Haihe River Basin is the lowest, which is only 6.1 %. From 2002 to 2022, most of the severe drought events occurred in the northern basins, and 3 of the top 6 drought events occurred in the Songliao River Basin; compared with scPDSI and SPEI, the spatial variation of drought monitored by GRACE-DSI is more consistent with the actual situation. However, since GRACE data represent all water changes, glacier melt water may lead to underestimation of GRACE-DSI.
GRACE time-varying gravity field model / terrestrial water storage changes / drought in China's nine major river basins / machine learning downscaling {{custom_keyword}} /
Tab.1 Evaluation index table of China's nine major river basins before and after downscaling reconstruction表1 中国九大流域降尺度重构前后评估指标表 |
缺失数据重构 | 降尺度重构前 | 降尺度重构后 | |||||||
---|---|---|---|---|---|---|---|---|---|
R | NSE | RMSE | R | NSE | RMSE | R | NSE | RMSE | |
海河流域 | 0.8 | 0.51 | 1.93 | 0.15 | -0.01 | 6.24 | 0.25 | 0.05 | 5.26 |
淮河流域 | 0.91 | 0.31 | 1.73 | 0.75 | 0.56 | 3.33 | 0.79 | 0.61 | 3.14 |
松辽河流域 | 0.61 | 0.38 | 1.63 | 0.91 | 0.72 | 2.85 | 0.91 | 0.79 | 2.45 |
珠江流域 | 0.94 | 0.7 | 2.17 | 0.79 | 0.43 | 3.47 | 0.82 | 0.61 | 2.87 |
西南诸河 | 0.98 | 0.81 | 1.99 | 0.91 | 0.56 | 3.35 | 0.95 | 0.9 | 1.57 |
东南诸河 | 0.75 | 0.08 | 1.87 | 0.78 | 0.57 | 2.88 | 0.82 | 0.67 | 2.55 |
内陆河 | 0.52 | 0.07 | 0.5 | 0.08 | -0.42 | 2.13 | 0.15 | -0.03 | 1.47 |
长江流域 | 0.99 | 0.97 | 0.42 | 0.83 | 0.43 | 2.09 | 0.87 | 0.69 | 1.53 |
黄河流域 | 0.87 | 0.54 | 2.29 | 0.1 | -0.03 | 3.99 | 0.13 | 0.12 | 3.41 |
Fig.5 Comparison of GRACE-DSI and various drought indices in nine major basins in China图5 中国九大流域降尺度重构GRACE-DSI与多种干旱指数对比 |
Tab.2 The correlation between GRACE-DSI and various drought indices before and after downscaling reconstruction of nine major river basins in China表2 中国九大流域降尺度重构前后GRACE-DSI与多种干旱指数相关性 |
降尺度前 | 降尺度后 | |||||||
---|---|---|---|---|---|---|---|---|
scPDSI | SPEI-03 | SPEI-06 | SPEI-12 | scPDSI | SPEI-03 | SPEI-06 | SPEI-12 | |
海河流域 | 0.57 | 0.14 | 0.25 | 0.50 | 0.59 | 0.17 | 0.29 | 0.51 |
淮河流域 | 0.66 | 0.33 | 0.44 | 0.64 | 0.67 | 0.35 | 0.46 | 0.64 |
松辽河流域 | 0.69 | 0.37 | 0.48 | 0.62 | 0.73 | 0.44 | 0.56 | 0.68 |
珠江流域 | 0.72 | 0.65 | 0.76 | 0.69 | 0.74 | 0.71 | 0.79 | 0.72 |
西南诸河 | 0.49 | 0.39 | 0.48 | 0.55 | 0.53 | 0.46 | 0.55 | 0.56 |
东南诸河 | 0.66 | 0.64 | 0.69 | 0.55 | 0.66 | 0.67 | 0.71 | 0.58 |
内陆河 | 0.37 | 0.16 | 0.21 | 0.31 | 0.45 | 0.24 | 0.27 | 0.32 |
长江流域 | 0.54 | 0.67 | 0.69 | 0.51 | 0.58 | 0.70 | 0.71 | 0.53 |
黄河流域 | 0.41 | 0.21 | 0.26 | 0.46 | 0.51 | 0.33 | 0.38 | 0.55 |
Tab.3 China's drought classification table表3 中国干旱等级划分表 |
scPDSI | GRACE-DSI | SPEI-03 | SPEI-06 | SPEI-12 | |
---|---|---|---|---|---|
无旱 | (-1,+∞) | (-0.5,+∞) | (-0.5,+∞) | (-0.6,+∞) | (-0.5,+∞) |
轻度 | (-2,-1] | (-1,-0.5] | (-1.1,-0.5] | (-1.1,-0.6] | (-1,-0.5] |
中旱 | (-3,-2] | (-1.6,-1] | (-1.6,-1.1] | (-1.6,-1.1] | (-1.6,-1.1] |
重旱 | (-4,-3] | (-2.2,-1.6] | (-2.1,-1.6] | (-2.1,-1.6] | (-2.0,-1.6] |
特旱 | (-∞,-4] | (-∞,-2.2] | (-∞,-2.1] | (-∞,-2.1] | (-∞,-2.0] |
Tab.4 Ranking of severity of drought events in China's nine major river basins (top 30)表4 中国九大流域干旱事件严重程度排序(前30) |
序号 | 流域 名称 | 开始 时间 | 持续 月份 | 严重 程度 | 序号 | 流域 名称 | 开始 时间 | 持续 月份 | 严重 程度 |
---|---|---|---|---|---|---|---|---|---|
1 | 松辽河流域 | 2007-07 | 19 | -29.0 | 16 | 黄河流域 | 2022-05 | 8 | -13.1 |
2 | 黄河流域 | 2016-02 | 16 | -25.3 | 17 | 淮河流域 | 2013-07 | 9 | -13.1 |
3 | 海河流域 | 2019-04 | 17 | -25.1 | 18 | 长江流域 | 2011-04 | 8 | -12.8 |
4 | 淮河流域 | 2019-05 | 14 | -21.9 | 19 | 东南诸河 | 2003-10 | 9 | -12.7 |
5 | 松辽河流域 | 2017-07 | 14 | -20.3 | 20 | 海河流域 | 2002-09 | 8 | -11.9 |
6 | 松辽河流域 | 2011-09 | 12 | -18.8 | 21 | 长江流域 | 2022-07 | 6 | -11.7 |
7 | 西南流域 | 2009-09 | 12 | -18.4 | 22 | 东南诸河 | 2013-07 | 8 | -11.6 |
8 | 珠江流域 | 2021-01 | 11 | -16.6 | 23 | 西南流域 | 2021-01 | 7 | -10.9 |
9 | 淮河流域 | 2002-08 | 10 | -16.4 | 24 | 东南诸河 | 2022-07 | 5 | -10.0 |
10 | 内陆河 | 2021-05 | 10 | -16.2 | 25 | 内陆河 | 2002-01 | 6 | -9.8 |
11 | 黄河流域 | 2002-08 | 10 | -16.2 | 26 | 内陆河 | 2014-12 | 6 | -9.6 |
12 | 海河流域 | 2015-08 | 11 | -15.8 | 27 | 西南流域 | 2022-07 | 6 | -9.2 |
13 | 珠江流域 | 2009-09 | 9 | -14.0 | 28 | 长江流域 | 2003-11 | 6 | -9.2 |
14 | 长江流域 | 2002-9 | 8 | -13.6 | 29 | 西南流域 | 2016-8 | 5 | -8.9 |
15 | 内陆河 | 2022-5 | 8 | -13.6 | 30 | 珠江流域 | 2022-8 | 5 | -7.9 |
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
陈国庆, 张昊, 朱仟. 中国长江流域典型区域地下水干旱预测研究[J]. 中国农村水利水电, 2023(4):114-124.
CHEN G Q, ZHANG H, ZHU Q Research on groundwater drought prediction in typical areas of the Yangtze River Basin in China[J]. China Rural Water Resources and Hydropower, 2023(4):114-124.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
ALI S,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
24 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
25 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
26 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
27 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
28 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
29 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
30 |
国家质量监督检验检疫总局, 中国国家标准化管理委员会. 气象干旱等级: GB/T 20481—2017 [S]. 北京: 中国标准出版社, 2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
31 |
中华人民共和国水利部. 水利部公布《2022中国水旱灾害防御公报》[EB/OL]. 2023-11-08
{{custom_citation.content}}
{{custom_citation.annotation}}
|
32 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |