Allocation Models of Biomass of Legume and Grass Forages of Artificial Grassland in Desert Steppe
Author information+
{{custom_zuoZheDiZhi}}
{{custom_authorNodes}}
Collapse
History+
Received
Revised
Published
2013-12-06
2013-12-13
2014-05-15
Issue Date
2015-04-09
Abstract
Analyzed and established the allocation of above- and below-ground biomass allocation models using legume and grass forages aboveground, underground biomass and root length data of artificial grassland in desert steppe .The results showed that above- and below-ground biomass allocation of two forages were obviously different. Legume forages biomass were significantly higher than grass forages, fitting parameters R2 was better than that of grass forages which means the allocation patterns between above-and belowground biomass were similar at both levels and indicated an isometric allocation relationship between above- and below-ground biomass. However, relationships between the root and the shoot of grass forages characterized by the allometry model, their correlation coefficients were larger than 0.3680 with a bias against the predicted modes of WBE. Legume forages allocated more biomass into roots with root / shoot (R/S) ratio of 0.75 which was close to the average of R/S ratio of China(0.78), On the contrary, grass forages allocated more biomass into shoots with R/S ratio of 1.73 which was significantly higher than 0.78. Two different size of individual forages R/S ratio were obvious plasticity, showed the intraspecific and interspecific differences, and R/S ratio of these legume and grass forages accord with the results predicted with the optimal theory and model. The R/S ratio of legume forages became smaller with the increase of individual, and the trends were opposite in grass forages. The biomass as well as its component were more relevant to root length, and the cubic curve was the optimal predictive model with correlation coefficient between 0.5112 and 0.9060
.
Allocation Models of Biomass of Legume and Grass Forages of Artificial Grassland in Desert Steppe. China Rural Water and Hydropower. 2014, 0(5): 1-6
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]Duncan W G, Loomis R S,Williams W A, et al. A model for simulating photosynthesis in plant communities[J]. Hilgardia, 1967(38): 181-205. [2]林忠辉, 莫兴国, 项月琴. 作物生长模型研究综述[J]. 作物学报, 2003, 29(5): 750-758. Lin Zhonghui, Mo Xingguo, Xiang Yueqin. Research advances on crop growth models[J], Acta Agronomica Sinica, 2003, 29(5): 750-758. [3]杨冬梅, 毛林灿, 彭国全. 常绿和落叶阔叶木本植物小枝内物量分配关系研究:异速生长分析[J]. 植物研究, 2011, 31(4): 472-477. Yang Dongmei, Mao Linchan, Peng Guoquan. Within-twig Biomass Allocation in evergreen and deciduous broad-leaved species: allometric scaling analyses[J]. Bulletin of Botanical Research, 2011, 31(4): 472-477. [4]Osada N. Crown development in a pioneer tree, Rhus trichocarpa, in relation to the structure and growth of individual branches[J]. New Phytologist, 2006(172):667-678. [5]Sultan S E. Phenotypic plasticity for plant development, function and life history[J]. Trends in Plant Science, 2000 (5): 537-542. [6]马文红, 方精云. 内蒙古温带草原的R/S及其影响因素[J]. 北京大学学报(自然科学版), 2006(42): 774-778. Ma Wenhong, Fang Jingyun. R∶S ratios of temperate steppe and the environmental controls in inner mongolia[J]. Acta Scientiarum Naturalium Universitatis Pekinensis, 2006(42): 774-778. [7]Jin Z, Dong Y S, Qi Y C, et al. Soil respiration and net primary productivity in perennial grass and desert shrub ecosystems at the Ordos Plateau of Inner Mongolia, China[J]. Journal of Arid Environments, 2010(74), 1248-1256. [8]刘任涛, 杨明秀, 朱凡. 荒漠草原柠条新萌孽枝叶相关关系及生态学意义[J]. 生物数学学报, 2013, 28(1): 179-184. Liu Rentao, Yang Mingxiu, Zhu Fan. Correlation between new branch and leaf of Caragana intermedia in desert steppe and Its ecological implication[J]. Journal of Biomathematics, 2013, 28(1): 179-184. [9]单立山, 李毅, 董秋莲, 等. 红砂根系构型对干旱的生态适应[J]. 中国沙漠, 2012, 32(5): 1283-1290. Shan Lishan, Li Yi, Dong Qiulian, et al. Ecological adaptation of reaumuria root system architecture to arid environment[J]. Journal of Desert Research, 2012, 32(5): 1283-1290. [10]曾凡江, 郭海峰, 刘波, 等. 多枝柽柳和疏叶骆驼刺幼苗生物量分配及根系分布特征[J]. 干旱区地理, 2010, 33(1): 59-64. Zeng Fanjiang, Guo Haifeng, Liu Bo, et al. Characteristics of biomass allocation and root distribution of Tamarix ramosissima Ledeb. And Alhagi sparsifolia Shap. Seedlings[J]. Arid Land Geography, 2010, 33(1): 59-64. [11]何玉惠, 赵哈林, 刘新平, 等. 不同类型沙地狗尾草的生长特征及生物量分配[J]. 生态学杂志, 2008, 27(4): 504-508. He Yuhui, Zhao Halin, Liu Xinping, et al. Growth characteristics and biomass allocation of Setaria viridis on different types of sandy land[J]. Chinese Journal of Ecology, 2008, 27(4): 504-508. [12]王军邦, 王政权, 胡秉民, 等. 不同栽植方式下紫椴幼苗生物量分配及资源利用分析[J]. 植物生态学报, 2006, 26(6): 677-683. Wang Junbang, Wang Zhengquan, Hu Bingmin, et al. Biomass allocation and resource use of Tilia amurensis juvenile under different planting treatments[J]. Chinese Journal of Plant Ecology, 2006, 26(6): 677-683. [13]侯振安, 李品芳, 龚江, 等. 不同滴灌施肥策略对棉花氮素吸收和氮肥利用率的影响[J]. 土壤学报, 2007, 44(4): 702-708. Hou Zhengan, Li Pinfang, Gong Jiang, et al. Effects of fertigation strategy on nitrogen uptake by cotton and use efficiency of N fertilizer[J]. Acta Pedologica Sinica, 2007, 44(4): 702-708. [14]禹朴家, 徐海量, 王炜, 等. 荒漠草地植物稳定性氮同位素对水分变化的响应[J]. 干旱区研究, 2012, 39(2): 347-351. Yu Pujia, Xu Hailiang, Wang Wei, et al. Response of 15N isotope in plant to water change in desert grassland[J]. Arid Zone Research, 2012, 39(2): 347-351. [15]张大勇. 植物生活史进化与繁殖生态学[M]. 北京: 科学出版社, 2004. Zhang Dayong. Plant Life-History Evolution and Reproductive Ecology[M]. Beijing: Science Press, 2004. [16]牛存洋, 阿拉木萨, 宗芹, 等. 科尔沁沙地小叶锦鸡儿地上-地下生物量分配格局[J]. 生态学杂志, 2013, 32(8): 1980-1986. Niu Cunyang, Alamusa, Zong Qin, et al. Allocation patterns of above- and below-ground biomass of Caragana microphylla in Horqin Sandy land, North China[J]. Chinese Journal of Ecology, 2013, 32(8): 1980-1986. [17]Evans G C. The Quantitative Analysis of Plant Growth[M]. California: University of California Press, 1972. [18]程栋梁. 植物生物量分配模式与生长速率的相关规律研究[D]. 兰州: 兰州大学, 2007. Chen Dongliang. Plant allometric study of biomass allocation pattern and biomass production rates[D]. Lan Zhou: Lan Zhou University, 2007. [19]Enquist B J, Niklas K J. Global allocation rules for pattern s of biomass partitioning in seed plants. Science[J], 2002(295): 1517-1520. [20]王敏, 苏永中, 杨荣, 等. 黑河中游荒漠草地地上和地下生物量的分配格局[J]. 植物生态学报, 2013, 37(3): 209-219. Wang Min, Su Yongzhong, Yang Rong, et al. Allocation patterns of above- and belowground biomass in desert grassland in the middle reaches of Heihe River[J]. Chinese Journal of Plant Ecology, 2013, 37(3): 209-219. [21]Mokany K, Raison R, Prokushkin A. Critical analysis of root: shoot ratios in terrestrial biomes[J]. Global Change Biology, 2006(12), 84-96. [22]王亮, 牛克昌, 杨元合, 等. 中国草地生物量地上-地下分配格局: 基于个体水平的研究[J]. 中国科学: 生命科学, 2010, 40(7): 642-649. Wang Liang, Niu Kechang, Yang Yuanhe, et al. Patterns of above- and belowground biomass allocation in China’s grasslands: evidence from individual-level observations[J]. Sci China Life Sci, 2010, 40(7): 642-649. [23]杨清, 苏光荣, 段柱标, 等. 彭镇华版纳甜龙竹种群生物量结构及其回归模型[J]. 西北农林科技大学学报(自然科学版), 2008, 32(8): 127-134. Yang Qing, Su Guangrong, Duan Zhubiao, et al. Biomass structure and its regression models of Dendrocalamus hamiltonii Nees et Arn. ex Munro population. Journal of Northwest A&F University(Nat. Sci. Ed.), 2008, 32(8): 127-134. [24]黎燕琼, 郑绍伟, 龚固堂, 等. 不同年龄柏木混交林下主要灌木黄荆生物量及分配格局[J]. 生态学报, 2010, 30(11): 2809-2818. Li Yanqiong, Zheng Shaowei, Gong Gutang, et al. Biomass and its allocation of undergrowth Vitex negundo L. in different age classes of mixed cypress forest[J]. Acta Ecologica Sinica, 2010, 30(11): 2809-2818.