Turbine Generating Units Fault Diagnosis of Based on the RBF Neutral Network

China Rural Water and Hydropower ›› 2014 ›› (5) : 146-149.

Turbine Generating Units Fault Diagnosis of Based on the RBF Neutral Network

Author information +
History +

Abstract

As turbine generator is effected by hydraulics, mechanical, electrical, and many other factors, it always has many complex failure, and these failures types often couple. This paper comprehensive analyzes of the subtractive clustering、K-Prototypes algorithm improved particle swarm optimization (PSO) algorithm,an algorithm of neural networks of Radial Basis Function is presented,establish a new RBF neural network model,and used it on the fault diagnosis of turbine generating unit. The simulation experiment results show that the classification accuracy rate and the stability of this model is higher and better.

Cite this article

Download Citations
. Turbine Generating Units Fault Diagnosis of Based on the RBF Neutral Network. China Rural Water and Hydropower. 2014, 0(5): 146-149

References

[1]张孝远, 周建中, 黄志伟, 李超顺, 贺徽.基于粗糙集和多类支持向量机的水电机组振动故障诊断[J][J].中国电机工程学报, 2010, 20:88-93
[2]Jia Rong, Huang Ge.Hydroelectric generating unit vibration fault diagnosis via BP neural network based on particle swarm optimization[C]//Proceeding of International Conference on Sustainable Power Generation and Supply, Nanjiang, China, 2009.
[3]兰飞, 唐玲.基于有向无环图支持向量机的水轮发电机组故障诊断模型[J].电网技术, 2010, 02:115-119.
[4]Xu Chunmei, Zhang Hao, Peng Daogang, et al.Study of fault diagnosis of integrate of D-S evidence theory based on neural network for turbine[J].Energy Procedia, 2012 (16):2027-2032.
[5]Zhang Xiaoyuan, Zhou Jianzhong, Guo Jun, et al.Vibrant fault diagnosis for hydroelectric generator units with a new combination of rough sets and support vector machine[J].Expert Systems With Applications, 2012, 39(3):2621-2628
[6]王强, 陈欢欢, 王珽.一种基于多类支持向量机的故障诊断算法[J]. 电机与控制学报, 2009, 02:302-306.
[7]周生奇, 周雒维, 孙鹏菊, 李亚萍.小波相关分析在IGBT模块缺陷诊断中的应用[J]. 电机与控制学报, 2012, 12:36-41.
[8]张腾飞, 马福民.粗糙-神经网络逆模补偿的发电机励磁复合控制[J]. 电机与控制学报, 2009, 01:104-111.
[9]葛利, 印桂生.基于小波和过程神经网络的时序聚类分析[J]. 电机与控制学报, 2011, 12:78-82.
[10]李超顺, 周建中, 杨俊杰, 李清清, 罗志猛.基于混合模糊聚类分析的汽轮发电机组振动故障诊断[J]. 电力系统自动化, 2008, 05:80-84.
[11]李超顺, 周建中, 肖剑, 肖汉.基于引力搜索核聚类算法的水电机组振动故障诊断[J]. 中国电机工程学报, 2013, 02:98-104+18.
[12]王孔森, 盛戈皞, 孙旭日, 王威, 王世强, 江秀臣.基于径向基神经网络的输电线路动态容量在线预测[J]. 电网技术, 2013, 06:1719-1725.
[13]彭显刚, 胡松峰, 吕大勇.基于RBF神经网络的短期负荷预测方法综述[J]. 电力系统保护与控制, 2011, 17:144-148.
[14]张利平, 孙美凤, 王铁生.新型的RBF神经网络在水轮发电机组故障诊断中的应用[J]. 水力发电学报, 2009, 06:219-223.
[15]张敬斋.RBF神经网络在水轮发电机故障诊断中的应用[J]. 计算机仿真, 2011, 12:314-317.
[16]庞振, 徐蔚鸿.一种基于改进k-means的RBF神经网络学习方法[J]. 计算机工程与应用, 2012, 11:161-163+184.
[17]Xiong HY, Sun SR.A distributed collaborative product customization system based on Web3D. [18]周美兰, 张宇, 杨子发, 康娣. 带压缩因子粒子群优化的混合动力汽车模糊能量管理策略[J]. 电机与控制学报, 2011, 11:67-72.
[18]马骏, 尉广军.一种改进的RBF神经网络学习算法[J]. 计算机系统应用, 2013, 02:84-87+47.
[19]李辉, 蔡敏, 谈亮.基于改进粒子群优化RBF神经网络的算法[J]. 火力与指挥控制, 2012, 02:144-146+150.
[20]夏轩, 许伟明.改进的粒子群算法对RBF神经网络的优化[J]. 计算机工程与应用, 2012, 05:37-40.

298

Accesses

0

Citation

Detail

Sections
Recommended

/