Vibration Analysis and Fault Diagnosis of Water Pump Unit Based on Wavelet Packet Sample Entropy and SVM

CHEN Ying-qiang, CHEN Yu-min, JIANG Jin, FU Xiang-qian, XIAO Zhi-huai , LAI Guan-wen, ZHANG Jia-xun

PDF(1609 KB)
China Rural Water and Hydropower ›› 2017 ›› (3) : 165-168.

Vibration Analysis and Fault Diagnosis of Water Pump Unit Based on Wavelet Packet Sample Entropy and SVM

  • CHEN Ying-qiang1,CHEN Yu-min2,JIANG Jin1,FU Xiang-qian1, XIAO Zhi-huai 1,LAI Guan-wen3,ZHANG Jia-xun3
Author information +
History +

Abstract

Wavelet packet sample entropy is used to extract the pump units in every vibration state of sample entropy value as the feature vectors of support vector machine (SVM),and then the SVM classifier is used to classify. Then on this basis,the fault diagnosis of the unit vibration is carried out. In order to verify the effect of this method in practical production,a lot of experiments were done on the experiment platform of vertical pump units. The experimental results show that the pump unit vibration fault diagnosis method has high reliability.

Key words

feature extraction / fault diagnosis / wavelet packet sample entropy / SVM / pump unit

Cite this article

Download Citations
CHEN Ying-qiang, CHEN Yu-min, JIANG Jin, FU Xiang-qian, XIAO Zhi-huai , LAI Guan-wen, ZHANG Jia-xun. Vibration Analysis and Fault Diagnosis of Water Pump Unit Based on Wavelet Packet Sample Entropy and SVM. China Rural Water and Hydropower. 2017, 0(3): 165-168

References

[1]刘晓亭,冯辅周. 水电机组运行设备监测诊断技术及应用[M].北京: 中国水利水电出版社,2010.
[2]陈喜阳.水电机组状态检修中若干关键技术研究[D].武汉: 华中科技大学,2005.
[3]Richman J S,Moorman J R. Physiological time-series analysis usingapproximate entropy and sample entropy [J]. American Journal ofPhysiology-Heart and Circulatory Physiology,2002,278(6) : 2 039-2 049.
[4]R Alcaraz,J J Rieta. A review on sample entropy applications for thenon-invasive analysis of atrial fibrillation electrocardiograms[J]. Biomedical Signal Processing and Control,2010.
[5]Raffa F A,Vatta V. The dynamic stiffness method for linear rotor-bearing system[J]. ASME Journal of Vibration and Acoustics,1996,118(7) : 332-339.
[6]Pincus S M. Assessing serial irregularity and its implications for health[J]. Ann. N. Y. Acad. Sci,2002,954: 245-267.
[7]平 源. 基于支持向量机的聚类及文本分类研究[D]. 北京: 北京邮电大学 2012.
[8]彭 璐. 支持向量机分类算法研究与应用[D]. 长沙: 湖南大学2007.
[9]瞿 曌,赖 旭,盛 旺.水电机组状态检修模式探讨[J].华东电力,2008,(1) : 109-111.
[10]王洪杰,刘全忠,季天晶,等. 锅炉给水泵故障机理及诊断技术的研究[J]. 节能技术,2004,22(6) : 30-31.
[11]丁世飞,齐丙娟,谭红艳. 支持向量机理论与算法研究综述[J].电子科技大学学报,2011,40(1) : 2-10.
[12]吴兴伟,王 雷,迟道才. 基于多分类 SVM 的水泵故障诊断的研究[J]. 节水灌溉,2009,(7) : 37-39.
[13]张 炜,张 磊,李 亮. 基于 GA 优化的 SVM 涡轮泵故障诊断[J].液压与气动,2009,(1) : 84-86.
[14]苟 博,黄贤武. 支持向量机多类分类方法[J]. 数据采集与处理,2006,21(3) : 334-339.
PDF(1609 KB)

329

Accesses

0

Citation

Detail

Sections
Recommended

/