As the operation of traditional CART decision tree model is time-consuming,we choose the Fayyad Boundary Decision Theorem
optimization attributes to reduce the time for operation. Because of the factors that influence the formation of bloom,this paper uses the
correlation coefficient in statistics to select the influencing factors that have a greater correlation with the occurrence of bloom,one step is to
filter the condition attributes one by one,to further shorten the running time,and to ensure the overall prediction accuracy. Finally,the
experimental results show that the improved bloom warning model can reduce the running time and ensure the correct rate of prediction.
Key words
improved decision tree /
water bloom warning /
CART algorithm /
optimal threshold /
correlation coefficient
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1] 王立,高崇,王小艺等. 蓝藻生长时变系统非线性动力学分析及水华预测方法 [J]. 化工学报,2017,68(3):1065-1072.
[2] QIN B. The changing environment of Lake Taihu and itsecosystem responses[J]. Journal of Freshwater Ecology, 2015,30(1): 1-3.
[3] 焦李成,杨淑媛,刘芳等. 神经网络七十年:回顾与展望[J]. 计算机学报,2016,39(8):1697-1716.
[4] 潘大胜,屈迟文. 一种改进ID3型决策树挖掘算法[J].华侨大学学报(自然科学版),2016,37(1):71-73.
[5] 谢妞妞. 决策树算法综述[J]. 软件导刊,2015,14(11):63-65.
[6] 张亮,宁芊. CART决策树的两种改进及应用[J]. 计算机工程与应用,2015,36(5):1209-1213.
[7] 苗煜飞,张霄宏. 决策树C4.5算法的优化与应用[J]. 计算机工程与应用,2015,51(13):255-258.
[8] 胡美春,田大钢. 一种改进的C4.5决策树算法[J]. 软件导刊,2015,14(7):54-56.
[9] 董跃华,刘力. 基于相关系数的决策树优化算法 [J]. 计算机工程与科学,2015,37(9):1783-1792.
[10] 齐凌艳,黄佳聪等. 洪泽湖叶绿素 a 浓度的时空变化特征 [J]. 湖泊科学,2016,28(3):583-591