Research on the Feasibility of the Resource Utilization of Dredging Sediments: a Case Study in Wenruitang River

HU Ru-yi , ZHOU Pei-pei , MEI Kun , SHANG Xu , HUANG Hong , HUANG Shu-hu

PDF(391 KB)
China Rural Water and Hydropower ›› 2020 ›› (10) : 121-125.

Research on the Feasibility of the Resource Utilization of Dredging Sediments: a Case Study in Wenruitang River

  • HU Ru-yi 1 ,ZHOU Pei-pei 2 ,MEI Kun3 ,SHANG Xu2 ,HUANG Hong4 ,HUANG Shu-hu3
Author information +
History +

Abstract

A large number of dredging projects have been carried on in many regions along with the promotion of water pollution prevention and management, yet how to deal with the dredging sediments is another environment issue. This paper monitors the heavy metal elements (Hg,As,Cd,Pb,Cr,Ni,Cu and Zn) in sediments in 14 rivers in Wenruitang River Watershed in Zhejiang Province, and assesses the feasibility for resource utilization of the dredging sediment. Results show that according to Plant Soil for Greening (GJ/T340-2016), sediments in 1, 3, 1 and 9 of the rivers are conforming to Grade Ⅰ,Ⅱ, Ⅲ and Ⅳ of greed land, respectively. According to Soil Environmental Quality Risk Control Standard for Soil Contamination of Agricultural Land (GB15618-2018), sediments in 3 of the rivers are lower than the risk screening values, while for the remaining 11 rivers are ranging between risk screening values and risk intervention values. According to Soil Environmental Quality Risk Control Standard for Soil Contamination of Development Land (GB36600-2018), sediments in only 1 of the rivers are ranging between the risk screening values of Grade I and Grade Ⅱ, while the remaining 13 rivers are lower than the risk screening values of Grade Ⅰ. In general, the dredging sediments in the rivers in study area are appropriate for Grade Ⅳ of green land, as well as Grade Ⅱ of development land.

Key words

dredging sediment / resource utilization / risk screening value / risk intervention value / assessment

Cite this article

Download Citations
HU Ru-yi , ZHOU Pei-pei , MEI Kun , SHANG Xu , HUANG Hong , HUANG Shu-hu. Research on the Feasibility of the Resource Utilization of Dredging Sediments: a Case Study in Wenruitang River. China Rural Water and Hydropower. 2020, 0(10): 121-125

References

[1]RZEOECKI M. Bottom sediments in a humic lake with artificially increased calcium content: Sink or source for phosphorus?[J]. Water Air & Soil Pollution,1997,99(1-4):457-464.
[2]LI G, YANG H, ZHOU JM, et al. Lake Sediments from Dianchi Lake: A Phosphorus Sink or Source?[J]. Pedosphere, 2004,14(4):483-490.
[3]XU Y, WU Y, HAN J, et al. The current status of heavy metal in lake sediments from China: Pollution and ecological risk assessment [J]. Ecology & Evolution, 2017,7(14):5 454-5 466.
[4]孔令昊, 杨丽原, KONGL H, 等. 泗河表层沉积物重金属污染特征及潜在生态危害评价[J]. 中国农村水利水电,2013(3):41-44.
[5]RAHMAN M S, SAHA N, MOMMA A H. Potential ecological risk assessment of heavy metal contamination in sediment and waterbody around Dhaka export processing zone, Bangladesh [J]. Environmental Earth Sciences, 2014,71(5):2 293-2 308.
[6]HU C, DENG Z M, XIE Y H, et al. The Risk Assessment of Sediment Heavy Metal Pollution in the East Dongting Lake Wetland [J]. Journal of Chemistry, 2015(15):1-8.
[7]杨强, 刘明亮, 韩轶才, 等. 钱塘江沉积物重金属污染源解析及生态风险评价[J]. 环境科学与技术, 2017,40(12):278-283.
[8]贾英, 方明, 吴友军, 等.上海河流沉积物重金属的污染特征与潜在生态风险[J].中国环境科学, 2013,33(1):147-153.
[9]JIA H L,SUN K J, ZHANG J, et al. Distribution and Pollution Assessment ofHeavy Metals in Surface Sediment in Yellow River Estuary and the Adjacent Sea Area [J]. Applied Mechanics & Materials, 2014,665:464-468.
[10]ZHANG J, FU K D, WANG B, et al. Assessment of heavy metal pollution of bed sediment in the Lancang River[J]. Progressin Geography, 2014,33(8):1 136-1 144.
[11]TANG W, SHA N B, HONG Z, etal. Heavy metal sources and associated risk in response to agricultural in ten sification in the estuarine sediments of Chaohu Lake Valley, East China [J]. Journal of Hazardous Materials, 2010,176(1):945-951.
[12]YIN H, GAO Y, FAN C. Distribution, sources and ecological risk assessment of heavy metals in surface sediments from Lake Taihu, China[J]. Environmental Research Letters, 2011,6(4):044012.
[13]蒲雅丽, 涂耀仁, 游镇烽, 等. Pb-Zn同位素在沉积物重金属污染源解析方面的应用:综述与展望[J]. 环境化学, 2017,36(3):581-590.
[14]陈秀良, 郑君, 张超杰, 等. 河湖库塘清淤整治底泥计量换算公式及其适用性[J]. 人民长江, 2017(S1):43-45.
[15]严莲英. 阿哈水库疏浚底泥在园艺植物种植上的应用研究[D]. 贵阳:贵州大学, 2017.
[16]范志明, 张虎元, 王宝, 等. 疏浚底泥的园林绿化应用[J].安徽农业科学, 2009,37(3):1 089-1 091.
[17]李育伟, 杨艳萍, 肖文胜, 等. 湖泊疏浚底泥固化用于填埋用土技术初探[J]. 安全与环境学报, 2013,13(3):8-14.
[18]邵立明, 何品晶, 洪祖喜. 受污染疏浚底泥用作植物培植土的环境影响分析[J]. 环境科学研究, 2014,17(3):51-54,74.
[19]杨丹, 范欣柯, 刘燕, 等. 河道疏浚底泥农业利用可行性分析[J]. 科技通报, 2017,33(1):235-239.
[20]上海市水务局. 上海市水务局等关于印发《关于规范中小河道整治疏浚底泥消纳处置的指导意见》的通知[EB/OL].2018.http:∥www.shanghai.gov.cn/nw2/nw2314/nw2319/nw12344/u26aw57194.html.2018-10-30.
[21]瞿理印, 夏芳, 刘元元, 等. 温瑞塘河河网沉积物重金属生态风险评价[J]. 浙江农业科学, 2018,59(2):343-347.
[22]王长智, 任旭锋, 梅荣武. 温州河道底泥重金属污染特征和分级评价[J].四川环境, 2018,37(4):1-8.
[23]XIA F, QU L Y, WANG T, et al. Distribution and source analysis of heavy metal pollutants in sediments of a rapid developing urban river system[J]. Chemosphere, 2018,207:218-228.
[24]汪庆华,董 岩翔, 周国华,等. 浙江省土壤地球化学基准值与环境背景值[J]. 生态与农村环境学报,2007,23(2):81-88.
[25]徐卫红, 熊治庭, 王宏信, 等. 锌胁迫对重金属富集植物黑麦草养分吸收和锌积累的影响[J]. 水土保持学报,2005,19(4):32-35.
[26]蔡美芳, 李开明, 谢丹平, 等. 我国耕地土壤重金属污染现状与防治对策研究[J]. 环境科学与技术, 2014,37(S2):223-230.
[27]吕和娜. 温州近海围垦工程对瓯江口水动力的影响[D]. 浙江宁波:宁波大学,2015.
[28]胡昌锋. 浅谈如何加快新型城镇化建设:以温州市泰顺县“大拆大整、大建大美”专项行动为例[J]. 经贸实践,2017(8):70.
[29]杨海君, 张海涛, 许云海, 等. 长株潭地区集中式饮用水水源地周边土壤环境质量监测与评价[J].水土保持研究,2018,25(3):150-156.
[30]刘国锋, 张志勇, 刘海琴, 等. 底泥疏浚对竺山湖底栖生物群落结构变化及水质影响[J]. 环境科学,2010,31(11):2 645-2 651.
[31]薄录吉, 王德建, 颜晓, 等. 底泥环保资源化利用及其风险评价[J].土壤通报,2013,44(4):1 017-1 024.
[32]单玉书, 沈爱春, 刘畅. 太湖底泥清淤疏浚问题探讨[J]. 中国水利,2018,857(23):33-35.
[33]徐振华, 刘建国, 宋敏英, 等. 污泥与底泥烧结陶粒骨料的中试研究[J]. 环境工程学报,2013,7(6):2 307-2 316.
[34]周颜, 贾瑞, 周兰,等. 疏浚底泥免烧陶粒的制备及其净水效果[J]. 环境工程学报,2017,11(5):2 804-2 811.
[35]彭瑜, 赖佑贤, 黄锦城. 重金属污染底泥环保清淤与稳定化资源化处置技术[J]. 水资源开发与管理,2017(2):25-28.
[36]魏佳明, 张晓艺, 李婉, 等. 湿地清淤底泥资源化处置现状与前景[J]. 湿地科学与管理,2019,15(2):66-69.
PDF(391 KB)

269

Accesses

0

Citation

Detail

Sections
Recommended

/