Spatial Variability Analysis of Permeability Coefficient in Aksu River Basin

PDF(13570 KB)
China Rural Water and Hydropower ›› 2021 ›› (1) : 64-70.

Spatial Variability Analysis of Permeability Coefficient in Aksu River Basin

Author information +
History +

Abstract

In order to evaluate the groundwater resources of Aksu River Basin reasonably, the spatial variability and structural analysis of the permeability coefficient of Aksu River Basin are carried out by using the method of traditional statistics and geostatistics through field test and collection of previous research results. The results show that the variation of permeability coefficient in Aksu River Basin is more than that of confined water; the permeability coefficient of phreatic aquifer is greatly influenced by the randomness factors such as external conditions, and the confined water is greatly influenced by the structural factors such as aquifer location and formation lithology, and the best fitting model of variation function is Gauss and index model respectively; the variation degree of permeability coefficient in north-south direction is greater than that in east-west direction, and the main variation is along the Aksu River. By using Kriging interpolation, the overall performance of permeability coefficient is that it decreases gradually from north to south, the river nearby is larger than far away from the river, and the parameter division and value range of phreatic water and confined water are given. This conclusion provides a reasonable and reliable parameter selection basis for groundwater resource evaluation and numerical simulation in Aksu Area, and can be used as a reference for the study of permeability coefficient in other areas.

Key words

Aksu River / permeability coefficient / spatial variability / structural analysis

Cite this article

Download Citations
. Spatial Variability Analysis of Permeability Coefficient in Aksu River Basin. China Rural Water and Hydropower. 2021, 0(1): 64-70

References

[1]施小清, 吴吉春, 袁永生, 等. 含水介质各向异性对渗透系数空间变异性统计的影响[J]. 水科学进展, 2005,16(5):679-684.
[2]朝伦巴根, 和泰. 含水层渗透系数K的空间变异性研究[J]. 地质学报, 1994,94(4):358-367.
[3]刘玲玲, 吴剑锋, 吴吉春, 等. 不同地质统计方法在确定渗透系数场中的对比研究[J]. 水文地质工程地质, 2009,36(5):66-71.
[4]GEDEON D. Flow and Transport in Porous Formations[M]. Springer Berlin Heidelberg, 1989.
[5]DAGAN G. Stochastic modeling of groundwater flow by unconditional and conditional probabilities: the inverse problem[J]. Water Resources Research, 1985,21(1):65-72.
[6]ZHANG Y K. Stochastic Methods for Flow in Porous Media[J]. Vadose Zone Journal, 2006,5(3):908-919.
[7]HU B X, WU J C, PANORSKA A K, et al. Stochastic study on groundwater flow and solute transport in a porous medium with multi-scale heterogeneity[J]. Advances in Water Resources, 2003,26(5):541-560.
[8]施小清, 吴吉春, 袁永生, 等. 渗透系数空间变异性研究[J]. 水科学进展, 2005,16(2):210-215.
[9]王文科, 李俊亭, 王钊, 等. 河流与地下水关系的演化及若干科学问题[J]. 吉林大学学报(地球科学版), 2007(2):231-238.
[10]LANDON M K, RUS D L, HARVEY F E, et al. Comparison of instream methods for measuring hydraulic conductivity in sandy streambeds[J]. Groundwater, 2001,39(6):870-885.
[11]GENEREUX D P, LEAHY S, MITASOVA H, et al. Spatial and temporal variability of streambed hydraulic conduc-tivity in West Bear Creek, North Carolina, USA[J]. Journal of Hydrology, 2008,358(3-4):332-353.
[12]介飞龙, 李升. 河床垂向渗透系数空间变异性的三维分析[J]. 人民黄河, 2018,40(4):49-54.
[13]陈彦, 吴吉春. 含水层渗透系数空间变异性对地下水数值模拟的影响[J]. 水科学进展, 2005,16(4):482-487.
[14]WU J C, BILL X H, ZHANG D X, et al. Application of nonstationary stochastic theory to solute transport in multi-scale geological media[J].Journal of Hydrology, 2003,275(3- 4):208- 228.
[15]EGGLESTON J, ROJSTACZER S. Identification of large-scale hydraulic conductivity trends and the influence of trends on contaminant transport[J]. Water Resources Research, 1998,34(9):2 155-2 168.
[16]施小清, 姜蓓蕾, 卞锦宇, 等. 以地质统计方法推估上海第三承压含水层渗透系数的分布[J]. 工程勘察, 2009,37(1):36-41.
[17]李飞飞, 周群立, 黄溯航, 等. 基于地统计学分析的渗透系数空间变异性应用研究[J]. 施工技术, 2018,47(12):846-849.
[18]CHO S E. Probabilistic analysis of seepage that considers the spatial variability of permeability for an embankment on soil foundation[J]. Engineering Geology, 2012,32(6)30-39.
[19]李运明, 封宗超, 李小凯, 等. Box-Cox变换及其在SPSS软件中的实现[J]. 数理医药学杂志, 2009,22(5):569-571.
[20]VIEIRA S R, CASTRO O M D, TOPP G C, et al. Spatial variability of some soil physical properties in three soils of San Paulo, Brazil[J]. Pesquisa Agropecuaria Brasileira, 1992.
[21]侯景儒. 地质统计学的理论与方法[M]. 北京: 地质出版社, 1990.
[22]介飞龙. 玉龙喀什河河床渗透系数空间变异性研究[D]. 乌鲁木齐: 新疆大学, 2018.
[23]宋浩, 张琛, 刘明, 等. 基于地统计学的伊犁-巩乃斯河谷渗透系数空间变异性研究[J]. 水资源与水工程学报, 2019,30(1):100-106.
[24]王仁铎, 胡光道. 线性地质统计学[M]. 北京: 地质出版社, 1988.
[25]李为萍. 土壤水盐与作物信息空间结构性及其协同关系研究[D]. 呼和浩特: 内蒙古农业大学, 2004.
[26]ROSSI R E, MULLA D J, JOURNEL A G, et al. Geostatistical tools for modeling and interpreting ecological spatial dependence[J]. Ecological Monographs, 1992,62(2):277-314.

Funding

Dynamic mechanism and ecological effect of surface water and groundwater transformation in typical basins of Junggar Basin

PDF(13570 KB)

827

Accesses

0

Citation

Detail

Sections
Recommended

/