Puzhehei River Basin Water Body Information Extraction Based on the Typical Karst Area of NEWI Model

PDF(7056 KB)
China Rural Water and Hydropower ›› 2021 ›› (1) : 71-75.

Puzhehei River Basin Water Body Information Extraction Based on the Typical Karst Area of NEWI Model

Author information +
History +

Abstract

Water in Karst area is broken and the characteristics of vegetation and water body overlapping put forward a new type of mixed water index of the regional water resources management and evaluation plays an important role. The Puzhehei's Landsat8 OLI is based on the data of image data, building a new hybrid NEWI water index. Results show that the new water body index NEWI extracting effect is better than that of NDWI and MNDWI, especially vegetation breakage lakes contain pits and water area, NEWI calculated 25.3% degree of differentiation of water body and shadow, is greater than the NDWI (17.9%) and MNDWI (15.6%). Water's overall recognition accuracy is 88.83%, the Kappa coefficient 0.76 is greater than the NDWI (87.10%, Kappa coefficient 0.74) and MNDWI (81.93%, Kappa coefficient 0.64). NEWI water was used by the remote sensing image enhancement method, it can not only effectively extract the open water of the water body information, the edge is clear and reliable. For broken waters, NEWI water extract the highest precision, and compared with the classification of extraction process, based on the theory of the complex mathematical operation is relatively simple, easy to promote, can well improve Karst fractured zone, the accuracy of extraction and water drainage system for real-time monitoring.

Key words

karst area / broken waters / remote sensing information extraction / NEWI / Puzhehei

Cite this article

Download Citations
. Puzhehei River Basin Water Body Information Extraction Based on the Typical Karst Area of NEWI Model. China Rural Water and Hydropower. 2021, 0(1): 71-75

References

[1]聂亚文, 余明, 蓝婷. 基于MAWEI指数的水体信息提取方法[J]. 地球环境学报, 2019,10(3):281-290.
[2]吴佳平, 张旸, 张杰, 等. 基于MODIS数据的淤泥质海岸水体指数比较与分析:以黄河三角洲海岸为例[J]. 国土资源遥感, 2019,31(3):242-249.
[3]张永永, 刘丽娟, 赵盼盼. 新型水体指数的构建及在滨海湿地水域提取中的有效性验证[J]. 浙江农林大学学报, 2018,35(4):735-742.
[4]SHARMA R, TATEISHI R, HARA K, et al. Developing superfine water index (SWI) for global water cover mapping using MODIS data[J]. Remote Sensing, 2015,7(10):13 807-13 841.
[5]XIE H, LUO X, XU X, et al. Automated subpixel surface water mapping from heterogeneous urban environments using Landsat 8 OLI imagery[J]. Remote Sensing, 2016,8(7):584-586.
[6]YANG X C, ZHAO S S, QIN X B, et al. Mapping of urban surface water bodies from Sentinel-2 MSI imagery at 10 m resolution via NDWI-based image sharpening[J]. Remote Sensing, 2017,9(6):596-597.
[7]刘云根, 王妍, 张紫霞, 等. 普者黑岩溶湿地景观格局演变及驱动机制研究[J]. 林业科技, 2019,44(1):4-9.
[8]闻国静, 王妍, 刘云根, 等. 典型岩溶湖泊湿地流域土地利用动态及模拟预测[J]. 福建农林大学学报(自然科学版), 2017,46(2):220-227.
[9]闻国静, 刘云根, 王妍, 等. 普者黑湖流域景观格局及生态风险时空演变[J]. 浙江农林大学学报, 2017,34(6):1 095-1 103.
[10]倪大伟, 王妍, 刘云根, 等. 普者黑湿地小流域土壤总磷分布及污染风险评价[J]. 环境污染与防治, 2018,40(12):1 425-1 430.
[11]张紫霞, 刘鹏, 王妍, 等. 普者黑岩溶湿地沉积物氮, 磷, 有机质分布及污染风险评价[J]. 生态环境学报, 2019,28(9):1 835-1 842.
[12]肖骁, 张英, 桑会勇, 等. Landsat8-OLI 深蓝波段用于近海泥沙水质监测的效果[J]. 辽宁工程技术大学学报 (自然科学版), 2016,35(12):1 480-1 484.
[13]MCFEETERS S K. The use of the Normalized Difference Water Index (NDWI) in the delineation of open water features[J]. International Journal of Remote Sensing, 1996,17(7):1 425-1 432.
[14]徐涵秋. 利用改进的归一化差异水体指数 (MNDWI) 提取水体信息的研究[J].遥感学报, 2005(5):589-595.
[15]刘双童, 王明孝, 杨树文, 等. 基于 GF-2 高分辨率遥感影像的水体提取方法研究[J]. 全球定位系统, 2018,43(6):37-43.
[16]ZHAO X, WANG P, CHEN C, et al. Water body information extraction from remote-sensing images after disasters based on spectral information and characteristic knowledge[J]. International Journal of Remote Sensing, 2017,38(5):1 404-1 422.
PDF(7056 KB)

583

Accesses

0

Citation

Detail

Sections
Recommended

/