Comparison of GIS-based Spatial Interpolation on the Distribution of Precipitation

PDF(5113 KB)
China Rural Water and Hydropower ›› 2021 ›› (1) : 94-97.

Comparison of GIS-based Spatial Interpolation on the Distribution of Precipitation

Author information +
History +

Abstract

In order to obtain the optimal interpolation methods and simulate the spatial distribution of annual average precipitation in Hunan Province, this paper selects ordinary Kriging (OK), inverse distance weighting (IDW), Trend surface analysis (Trend), Spline function method (Spline) to interpolate based on data from 87 meteorological stations in Hunan Province from 1960 to 2015 under the support of ArcGIS 10.2 platform, and compares the interpolation precision of each interpolation method using cross validation method. Results indicate that: ① the spatial interpolation of precipitation in Hunan Province has uncertainties affected by many factors. ② IDW4 has the lowest interpolation error and higher accuracy, followed by Spline based on TENSION model, OK based on the trigonometric function model has slightly lower accuracy, and Trend of Order 2 has the worst interpolation accuracy. Those four methods can reflect the characteristics of the spatial distribution of annual average rainfall in Hunan Province to some extent. ③ There are certain differences in local areas among different methods, for example, OK's interpolation surface is rough, IDW and Spline have relatively smooth surfaces, and Trend's interpolation results are monotonous.

Key words

annual average precipitation / interpolation / cross-validation / ArcGIS / Hunan Province

Cite this article

Download Citations
. Comparison of GIS-based Spatial Interpolation on the Distribution of Precipitation. China Rural Water and Hydropower. 2021, 0(1): 94-97

References

[1]HUANG H P, LIANG Z M, LI B Q, et al. A new spatial precipitation interpolation method based on the information diffusion principle[J]. Stochastic Environmental Research and Risk Assessment, 2019,33(3):765-777.
[2]陈思淳, 黄本胜, 时芳欣, 等. 1956-2016年北江流域极端降水时空变化及概率统计特征[J]. 中国农村水利水电, 2019(10):47-53.
[3]符静, 秦建新, 黎祖贤, 等. “衡邵干旱走廊”历史降雨量时空特征及趋势分析[J]. 环境科学学报, 2017,37(8):3 097-3 106.
[4]汤国安, 杨昕. ARCGIS地理信息系统空间分析实验教程[M]. 北京:科学出版社, 2012.
[5]靳国栋, 刘衍聪, 牛文杰. 距离加权反比插值法和克里金插值法的比较[J]. 长春工业大学学报:自然科学版, 2003,24(3):53-57.
[6]李军龙, 张剑, 张丛, 等. 气象要素空间插值方法的比较分析[J]. 草业科学, 2006,23(8):6-11.
[7]GARCIA M, PETERS-LIDARD C D, GOODRICH D C. Spatial interpolation of precipitation in a dense gauge network for monsoon storm events in the southwestern United States[J]. Water Resources Research, 2008,44(5):387-400.
[8]鲁振宇, 杨太保, 郭万钦. 降水空间插值方法应用研究:以黄河源区为例[J]. 兰州大学学报(自然科学版), 2006,42(4):11-14.
[9]仲嘉亮. 基于GIS的新疆年降水量空间插值精度比较研究[J]. 干旱环境监测, 2010,24(1):43-46.
[10]林金煌, 林广发. 福建省降水空间插值方法比较与区域分布特征研究[J]. 海南师范大学学报(自然科学版), 2015,28(1):61-65.
[11]宋丽琼, 田原, 邬伦, 等. 日降水量的空间插值方法与应用对比分析:以深圳市为例[J]. 地球信息科学学报, 2008,10(5):566-572.
[12]CHEN D L, OU T H, GONG L B, et al. Spatial interpolation of daily precipitation in China: 1951–2005[J]. Advances in Atmospheric Sciences, 2010,27(6):1 221-1 232.
[13]董晓华, 薄会娟, 邓霞, 等. 降雨空间插值方法及在清江流域的应用[J]. 三峡大学学报(自然科学版), 2009,31(6):6-10.
[14]殷嘉霖, 屈创. 湖南省年均降水量空间插值模拟方法比较研究[J]. 甘肃科技, 2013,29(1):38-40,67.
[15]何文英, 毕孟飞, 李泽利, 等. 新安江流域降雨量空间插值方法和参数筛选[J]. 水资源与水工程学报, 2013,24(1):130-134.
[16]王天华. 西南地区降水量插值方法比较:以丽江市为例[J]. 长江科学院院报, 2018,35(10):21-24.
[17]解恒燕, 张深远, 侯善策, 等. 降水量空间插值方法在小样本区域的比较研究[J]. 水土保持研究, 2018,25(3):117-121.
PDF(5113 KB)

580

Accesses

0

Citation

Detail

Sections
Recommended

/