In order to study the law of water resources transformation in the Yimeng Mountain water and soil loss control area, which is under the influence of climate and vegetation cover, the Andi Reservoir Watershed is selected as the research object. The normalized vegetation index (NDVI) is used as an indicator to analyze the spatiotemporal changes of the vegetation cover. Distributed hydrological model SWAT is used to study the spatiotemporal evolution of hydrological elements, and analyze of surface water and groundwater conversion. The results show that, from 2000 to 2016, the NDVI of the watershed showed an increasing trend, of which NDVI increased significantly from 2007 to 2009.Spatially, 84% of the watershed area showed an increasing trend. The SWAT model has a good simulation effect. From 1990 to 2016, the average rainfall was 611.96 mm, the runoff was 225.96 mm, the surface runoff was 126.07 mm, the base flow was 72.07 mm, and the phreatic water recharge was 119.52 mm in the watershed. For the runoff, surface runoff accounts for 55%, base flow accounts for 27%, and subsurface runoff accounts for 18%. For the phreatic water recharge, the surface water contributes only about 5%, and the main recharge source is precipitation. Under the combined influence of climatic conditions and surface vegetation cover conditions, surface runoff decreased by 22% around 2006, the conversion of surface water to groundwater decreased, and the conversion of groundwater to surface water increased. The research results can provide theoretical basis and technical support for the rational development and utilization of water resources and the control of soil erosion in the Yimeng Mountain Area.
Key words
SWAT model /
Yimeng Mountain /
NDVI /
surface water and groundwater /
conversion law
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]朱金峰, 刘悦忆, 章树安, 等. 地表水与地下水相互作用研究进展[J]. 中国环境科学, 2017,37(8):3 002-3 010.
[2]LANDON M K, RUS D L, HARVEY F E. Comparison of Instream Methods for Measuring Hydraulic Conductivity in Sandy Streambeds[J]. Groundwater, 2001,39(6):870-885.
[3]顾学志. 挠力河流域地下水循环及其与河水转化关系研究[D]. 吉林:吉林大学, 2017.
[4]孟凡傲. 洮儿河扇形地地表水与地下水转化关系分析[D]. 吉林:吉林大学, 2017.
[5]张兵, 宋献方, 张应华,等. 第二松花江流域地表水与地下水相互关系[J]. 水科学进展, 2014,25(3):336-347.
[6]孙从建, 陈伟. 基于稳定同位素的海河源区地下水与地表水相互关系分析[J]. 地理科学, 2018(5).
[7]COX M H, SU G W, CONSTANTZ J. Heat, chloride, and specific conductance as ground water tracers near streams[J]. Groundwater, 2007,45(2):187-195.
[8]马瑞, 董启明, 孙自永, 等. 地表水与地下水相互作用的温度示踪与模拟研究进展[J]. 地质科技情报, 2013(2):131-137.
[9]ZOU T Y, ZHANG J. A Coupled Model for Evaluating Surface and Subsurface Flow-MODHMS[J]. Advanced Materials Research, 2015,1 073-1 076:1 716-1 719.
[10]张浩佳, 吴剑锋, 林锦, 等. GSFLOW 在干旱区地表水与地下水耦合模拟中的应用[J]. 南京大学学报(自然科学), 2015(3):596-603.
[11]袁飞. 考虑植被影响的水文过程模拟研究[D]. 南京:河海大学, 2006.
[12]LOCH R J. Effects of vegetation cover on runoff and erosion under simulated rain and overland flow on a rehabilitated site on the Meandu Mine, Tarong, Queensland[J]. Australian Journal of Soil Research, 2000,38:299-312.
[13]石峰. 黄河中游典型流域植被变化对水文过程的影响评估[D]. 郑州:郑州大学, 2019.
[14]史晓亮, 李颖, 赵凯, 等. 诺敏河流域植被覆盖时空演变及其与径流的关系研究[J]. 干旱区资源与环境, 2013,6(27):54-60.
[15]成向荣, 渠勇建, 虞木奎, 等. 植被覆盖变化对衢江流域水文效应的影响[J]. 生态环境学报, 2017,26(11):1 829-1 835.
[16]公明晓. 蒙阴县水资源可持续利用浅析[J]. 山东水利, 2011(1):31-33.
[17]刘世梁, 安南南, 尹艺洁, 等. 基于SWAT模型的澜沧江中游小流域水土流失与NDVI时空动态相关性[J]. 水土保持学报, 2016,1(30):62-67.
[18]徐新良. 中国年度植被指数(NDVI)空间分布数据集[EB/OL]. 中国科学院资源环境科学数据中心数据注册与出版系统http:∥www.resdc.cn/DOI, 2018.
[19]马士彬, 安裕伦, 杨广斌, 等. 不同地形梯度上的植被变化趋势及原因分析[J]. 生态环境学报, 2019,28(5):857-864.
[20]范松克, 郝成元. 2001-2016年河南省NDVI时空变化特征分析[J]. 江苏农业学报, 2019,35(4):860-867.
[21]龙爱华, 邹松兵, 许宝荣, 等. SWAT 2009理论基础[M]. 郑州: 黄河水利出版社, 2012.
[22]郝芳华, 程红光, 杨胜天. 非点源污染模型: 理论方法与应用[M]. 北京: 中国环境科学出版社, 2006.
[23]MOTOVILOV Y G, GOTTSCHALK L, ENGLAND K, et al. Validation of a distributed hydrological model against spatial observations[J]. Agricultural and Forest Meteorology, 1999,(98-99):257-277.
[24]BRAEMORT K S, ARABI M, FRANKENBERGER J R, et al. Modeling long-term water quality impact of structural BMPs[J]. Transactions of the ASABE, 2006,49(2):367-384.