In order to achieve a more scientific assessment of the water environment in the basin, a more comprehensive assessment method of gray water footprint in the basin is proposed based on the water footprint theory, to solve the problems of incomplete pollution accounting and inconsistent parameter selection principles in the previous assessment of gray water footprint in the basin. This study analyzes the gray water footprint and spatial characteristics of the river basin in 2018 from four pollution source: industry, resident life, livestock breeding and planting in the Fuzhou River Basin, and evaluates the water environment of the basin. The results show that the gray water footprint of the Fuzhou River Basin in 2018 was 2.923 billion m3, of which the industrial gray water footprint was 0.027 billion m3, the residents' pollution gray water footprint was 0.631 billion m3, the livestock breeding gray water footprint is 1.303 billion m3, and the gray water footprint of the planting industry was 0.962 billion m3. In 2018, the water pollution level of Fuzhou River Basin was 846.35%, which indicated that the surface water and pollution capacity in the basin had been completely exhausted and could not absorb the amount of pollutants produced in the purification basin every year. The results of the study quantify the gray water footprint of the basin and evaluate the current status of the water environment in the basin, which can provide a reference for the water environment management of the Fuzhou River Basin and other basin water environment assessments.
Key words
Fuzhou River Basin /
gray water footprint /
water pollution level /
water environment assessment
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]唐克旺. 中国治水已进入大保护的新时代 [J]. 水资源保护, 2018,34(1):16-17.
[2]李冰瑶, 陈星, 周志才, 等. 缺水地区水资源可持续利用评价与对策探讨 [J]. 水资源与水工程学报, 2017,28(6):104-108.
[3]梁立章, 刘丹, 田文英. 复州河流域水资源现状分析 [J]. 东北水利水电, 2011,29(10):29-30.
[4]潘荦, 黄晓荣, 魏晓玥, 等. 三种常用水质评价方法的对比分析研究 [J]. 中国农村水利水电, 2019(6):51-55.
[5]刘金英. 灰色预测理论与评价方法在水环境中的应用研究[D]. 长春: 吉林大学, 2004.
[6]周长松, 邹胜章, 李录娟, 等. 几种地下水水质评价方法的对比研究 [J]. 中国农村水利水电, 2015(8):87-90,93.
[7]何亚伯, 林霈, 汪洋, 等. 物元可拓法在污水处理项目综合评价中的应用 [J]. 中国农村水利水电, 2014(8):89-91,97.
[8]HOEKSTRA, ARJEN Y. Globalization of water: s-haring the planet's freshwater resources By Arjen Y Hoekstra and Ashok K Chapagain [J]. Geo-graphical Journal, 2010,175(1):85-86.
[9]HOEKSTRA A Y, CHAPAGAIN A K, ALDAYA M M, 等著. 刘俊国, 曾昭, 韩乾斌, 等 译. 水足迹评价手册[M]. 北京: 北京科学出版社, 2012:13-70.
[10]王丹阳, 李景保, 叶亚亚, 等. 基于不同受纳水体的湖南省农业灰水足迹分析 [J]. 水资源保护, 2016,32(4):49-54.
[11]PELLICER-MARTINEZ F, MIGUEL MARTINEZ-PAZ J. Grey water footprint assessment at the ri-ver basin level: Accounting method and case stu-dy in the Segura River Basin, Spain [J]. Ecologi-cal Indicators, 2016, 60(1):1 173-1 183.
[12]张鑫, 李磊, 甄志磊, 等. 时空与效率视角下汾河流域农业灰水足迹分析 [J]. 中国环境科学, 2019,39(4):1 502-1 510.
[13]黄万霞. 大伙房水库上游流域灰水足迹核算评价及预测[D]. 沈阳: 沈阳农业大学, 2018.
[14]曹连海, 吴普特, 赵西宁, 等. 内蒙古河套灌区粮食生产灰水足迹评价 [J]. 农业工程学报, 2014,30(1):63-72.
[15]李飞, 董锁成. 西部地区畜禽养殖污染负荷与资源化路径研究[J]. 资源科学, 2011,33(11):2 204-2 211.
[16]赵凯. 复州河流域水质水量综合改善方案研究[D]. 大连: 大连理工大学, 2016.
[17]国家环境保护总局, 国家质量监督检验检疫总局. 地表水环境质量标准: GB3838-2002[S]. 北京: 中国环境科学出版社, 2002.
[18]中华人民共和国建设部. 室外给水设计规范: GB50013-2006[S]. 北京: 中国计划出版社, 2006.
[19]中华人民共和国水利部. 村镇供水工程设计规范: SL687-2014[S]. 北京: 中国水利水电出版社, 2014.
[20]第一次全国污染源普查资料编纂委员会. 污染源普查产排污系数手册[M]. 北京: 中国环境科学出版社, 2011:347-367.
[21]中华人民共和国建设部. 城市居民生活用水量标准:GB/T50331-2002[S]. 北京: 中国建筑工业出版社,2002.
[22]中国农业科学院农业环境与可持续发展研究所. 第一次全国污染源普查畜禽养殖业源产排污系数手册[EB/OL]. [2020-09-01]. http:∥www.docin.com/p-1847271729.html., 2009-02-01/
[23]国家环境保护总局自然生态保护司. 全国规模化畜禽养殖业污染情况调查及防治对策[M]. 北京: 中国环境科学出版社, 2002:2-20.
[24]国家环境保护总局. 畜禽养殖业污染物排放标准: GB18596-2001[S]. 北京: 中国环境科学出版社, 2001.
[25]中国农业科学院农业环境与可持续发展研究所. 第一次全国污染源普查农业污染源肥料流失系数手册[EB/OL]. [2020-09-01]. http:∥www.docin.com/p-307757881.html., 2009-02-01.
[26]大连市统计局. 大连市统计年鉴2019[M]. 北京: 中国统计出版社, 2019:241-252.