To improve the accuracy of runoff prediction, research and propose a runoff prediction method that combines the marine predator algorithm (MPA) and the long and short-term memory (LSTM) neural network. Test MPA and particle swarm optimization (PSO) algorithms through 6 simulation functions, use MPA to optimize key parameters such as the number of neurons in the hidden layer of LSTM, training times, etc., and establish PCA based on principal component analysis (PCA) dimensionality reduction and non-dimensionality reduction processing. -MPA-LSTM and MPA-LSTM runoff prediction models, using the measured data from the Luoque Station in Yunnan Province to train and predict the PCA-MPA-LSTM and MPA-LSTM models, and the results are consistent with PCA-LSTM, LSTM, PCA-MPA-SVM, Compare the training and prediction results of MPA-SVM, PCA-MPA-BP and MPA-BP models. The results show that: 1) MPA simulation effect is better than PSO algorithm, with better optimization accuracy and global search ability. 2) The average relative errors of PCA-MPA-LSTM and MPA-LSTM models for instance fitting and prediction are 1.18%, 2.35%, 1.94%, and 1.96%, respectively. The prediction effect is better than the other 6 models and has better prediction Precision and generalization ability. 3) Using MPA to optimize the key parameters of LSTM can effectively improve the generalization ability and prediction accuracy of LSTM; the prediction accuracy of the data dimensionality reduction model is better than that of the corresponding non-dimensionality reduction model, and the data dimensionality reduction processing can effectively improve the prediction effect of the model.
Key words
runoff forecasting /
long-short term memory neural network /
marine predators algorithm /
simulation /
data reduction /
sparameter optimization
{{custom_keyword}} /
{{custom_sec.title}}
{{custom_sec.title}}
{{custom_sec.content}}
References
[1]赵文刚,刘晓群,宋雯,等. 基于PSO-BP神经网络的西洞庭湖南咀站径流预测[J].人民长江, 2019,50(3):124-130.
[2]桑宇婷,赵雪花,祝雪萍,等. 基于CEEMD-BP模型的汾河上游月径流预测[J].人民黄河,2019,41(8):1-5.
[3]赵雪花,桑宇婷,祝雪萍. 基于CEEMD-GRNN组合模型的月径流预测方法[J].人民长江, 2019,50(4):117-123.
[4]李志新,赖志琴,龙云墨. 基于 GA - Elman 神经网络模型的年径流预测[J]. 水利水电技术, 2018,49(8):71-77.
[5]李天成,钟平安,吴业楠, 等. 基于产流机制的中长期径流预测RBF神经网络模型研究[J]. 水力发电, 2017,43(3):16-20.
[6]周有荣,崔东文.基于混合核SHTS-SVM的年径流预测[J].水资源与水工程学报,2019,30(3):66-72.
[7]崔东文,金波.基于改进的回归支持向量机模型及其在年径流预测中的应用[J].水力发电学报,2015,34(2):7-14.
[8]李月玉,崔东文,高增稳. 基于多组群教学优化的随机森林预测模型及应用[J].人民长江, 2019,50(7):83-86.
[9]崔东文,郭荣.基于随机漂移粒子群优化的随机森林预测模型及水文应用实例[J].三峡大学学报(自然科学版), 2019,41(2):10-14.
[10]孙娜, 周建中. 基于正则极限学习机的非平稳径流组合预测[J]. 水力发电学报, 2018,37(8):22-30.
[11]李代华,崔东文.基于PCA-MPA-ANFIS模型的年径流预测研究[J]. 水电能源科学,2020(7):24-29.
[12]余本功,许庆堂,张培行.基于MAC-LSTM的问题分类研究[J]. 计算机应用研究,2020,37(1):40-43.
[13]闫佰忠, 孙剑, 王昕洲,等. 基于多变量LSTM神经网络的地下水水位预测[J]. 吉林大学学报(地球科学版), 2020,50(1):208-216.
[14]李校林,吴腾. 基于PF-LSTM网络的高效网络流量预测方法[J]. 计算机应用研究, 2019,36(12):3 833-3 836.
[15]史建楠,邹俊忠,张见,等. 基于DMD-LSTM模型的股票价格时间序列预测研究[J]. 计算机应用研究, 2020,37(3):662-666.
[16]温惠英,张东冉,陆思园. GALSTM 模型在高速公路交通流预测中的应用[J]. 哈尔滨工业大学学报,2019,51(9):81-87,95.
[17]李万,冯芬玲,蒋琦玮. 改进粒子群算法优化LSTM 神经网络的铁路客运量预测[J].铁道科学与工程学报,2018,15(12):3 274-3 280.
[18]宋刚, 张云峰, 包芳勋, 等. 基于粒子群优化LSTM的股票预测模型. 北京航空航天大学学报, 2019,45(12):2 533-2 542.
[19]AFSHIN F, MOHAMMAD H, SEYEDALI M, et al. Marine predators algorithm: a nature-inspired metaheuristic[J]. Expert Systems With Applications. 2020.
[20]崔东文,李代华. 基坑变形预测的改进供需优化算法-指数幂乘积模型[J].水利水电科技进展,2020,40(4):43-50.
[21]张强,贾宝山,董晓雷,等. PCA-GA-SVM的回采工作面瓦斯涌出量预测[J]. 辽宁工程技术大学学报(自然科学版),2015,34(5):572-577.
[22]金洪伟, 周捷. 基于无量纲数的PCA-MRA在煤矿瓦斯涌出量预测中的应用[J].安全与环境工程,2019,26(3):187-192.