Adaptive Test Technology of Temperature Prediction of Units in Start-up State

Zhi-qiang WANG, Hao ZHANG, Yu-min PENG

PDF(784 KB)
China Rural Water and Hydropower ›› 2021 ›› (4) : 192-194,200.

Adaptive Test Technology of Temperature Prediction of Units in Start-up State

Author information +
History +

Abstract

The prediction accuracy of temperature prediction model based on machine learning depends on the number of fault samples. The number of unit fault samples is limited. And fault samples from different pumped store power station are often not interchangeable. The generation technology and sensitivity test technology of fault samples are proposed in this paper. It provides fault samples and test technology for intelligent trend judgment algorithm. The test can completely cover the trend characteristics under fault conditions. The limitation of relying on the fault samples is overcome. The quantitative evaluation for the implementation effect of intelligent technology is achieved. Intelligent technology parameter adjustment, selection of appropriate algorithms and implementation means are provided with index support. The verification of the implementation effect of the intelligent technology is realized in advance to avoid losses and uncertain influences caused by the verification through actual projects.

Key words

unit / temperature prediction / fault samples / testing technology

Cite this article

Download Citations
Zhi-qiang WANG , Hao ZHANG , Yu-min PENG. Adaptive Test Technology of Temperature Prediction of Units in Start-up State. China Rural Water and Hydropower. 2021, 0(4): 192-194,200

0 引 言

发电厂值班员需要对超过500个以上带跳闸出口功能的温度测点进行监视。这些带跳闸出口功能的温度测点分布于监控系统上位机不同模拟图中1-4。依靠值班员人工跟踪变化趋势提前发现异常难度极大。随着机器学习等智能技术蓬勃发展,智能技术在趋势判断和预测方面提供了重要技术手段56
然而不容忽视的是,这些智能技术依赖于故障样本,需要大量故障样本参与算法训练过程,才能保证良好的实施效果3。在技术成熟的发电厂运维中故障样本数据少之又少4。此外更缺少检验智能技术实施效果的测试方法。对于智能技术的应用效果停留在主观模糊的认识,甚至停留于偶然事件的处置中。由此可见,当前急需测试智能趋势判断算法性能的手段和为智能趋势判断算法提供故障样本的方法7-10
现有基于机器学习的机组温度预测模型所需的故障样本,都来自于大修后调试和故障处理。然后实际中一方面,获取这些故障样本代价极高,另一方面,这些故障样本的数值特性不能完全覆盖故障情况下的趋势特征,存在局限性11
针对故障样本不足问题,已有不少文献研究了样本生成技术。文献[12]提出了虚拟样本生成技术。文献[1314]利用梯度惩罚优化的条件式Wasserstein生成对抗网络模型指导故障样本生成。上述研究基于不同理论生成故障样本,然而理论较为复杂,对计算都要较高的要求,难以广泛应用于实际生产中。
为解决智能趋势判断算法依赖实测故障样本的局限性并考虑方法的实用性,本文结合工程经验进行标准化,综合历史运行情况、报警阈值、开关量信号等历史数据,提出了故障样本的自适应生成和基于灵敏度的测试方案。所提方法在算法测试时,可以根据机组历史运行情况进行自适应调整,使得获得故障样本和测试智能技术实施效果的工作,得以通过计算机多快好省的一揽子解决。

1 故障样本自适应生成技术

发电厂中不同功能位置类型的温度测点由于监视对象不同,温度测点在不同工况下的变化规律大相径庭。为适应发电厂不同功能位置类型测点的故障样本需求,可以从历史统计获得测点的平均概率下的变化趋势,从报警值获得测值距离报警值的裕量。通过平均概率下的变化趋势叠加裕量,即可自适应获得不同功能位置类型下的故障样本。因此该技术需首先统计温度测点开关量信号测值的历史数据,然后综合历史统计、温度测点报警值、温度测点当前测值计算获得带时标的温度测点模拟测值,具体如下:
基于开关量信号的温度测点测值历史统计由以下步骤获得:
(1)遍历近半年的开关量信号记录,将按顺序同时满足开关量信号集合 K 的开关量信号取出,按开关量信号集合 K 的顺序将取出的开关量信号的时间存在时间序列 TL 中;
(2)遍历近半年的温度测点ID集合 M 的温度记录,将时标为时间序列 TL 且为温度测点集合 M 的测点测值的最大值取出获得测点测值集合 CL
(3)测点测值集合 CL 即为基于开关量信号的温度测点测值历史统计。
综合历史统计、温度测点报警值、温度测点当前测值计算获得带时标的温度测点模拟测值由以下步骤获得:
(1)从测点测值集合 CL 获取平均值V ave,获取机组该测点一级报警值b 1,获取机组该测点二级报警值b 2
(2)计算获得叠加斜率k 1,叠加斜率k 1=b 1/V ave-1,计算获得叠加斜率k 2,叠加斜率k 2=b 2/V ave-1。
(3)设i=1,测试样本数y b,公差d=k 2-k 1
(4)计算tmp1=k 1+(i-1)×d
(5)当i不大于y b时,将tmp1存到向量ki)中,i=i+1,转至(4)步,当i大于y b时,执行第(6)步。
(6)将向量 k 各元素加0.01后即为叠加斜率向量 k
(7)获取开关量信号集合 K 中机组开机令信号的时刻T 1,机组负荷达到基荷信号的时刻T 3
(8)设i=1。
(9)获取带时标的实测温度测值为xt),在T 1时刻前yt)= xt),在T 1T 3之间yt)=xt)×[1+ki)],在T 3时刻之后yt)=
xt)+[yT 3)-xT 3)]。
(10)当i不大于y b时,将列向量 y 转置后存到矩阵 yy 中,i=i+1,转至(9)步,当i大于yb 时,执行第(11)步。
(11)矩阵 yy 即为带时标的温度测点模拟测值。

2 基于灵敏度的测试技术

基于灵敏度的测试流程如图1所示。
Fig.1 Flow chart

图1 流程图

Full size|PPT slide

(1)从时序事件记录表、温度测点表、报警阈值表中读取事件记录顺序情况、温度测点ID、温度测点报警值;
(2)获取机组近半年正常运行状态的运行记录形成基于开关量信号的温度测点测值历史统计;
(3)综合历史统计、温度测点报警值、温度测点当前测值计算获得带时标的温度测点模拟测值;
(4)将带时标的温度测点模拟测值提供给机组启动状态温度测值智能预测算法测试,并计算灵敏度;
(5)当灵敏度小于阈值时,发出报警提醒技术人员调整被测试算法的参量。
灵敏度由以下步骤计算获得:
(1)获取测试样本数yb
(2)获取开关量信号集合 K 中机组开机令信号的时刻T 1,机组稳态信号的时刻T 2,机组负荷达到基荷信号的时刻T 3,设i=1,f=0;
(3)将带时标t的温度测点模拟测值 yyi,:)提供给机组启动状态温度测值智能预测算法测试,测试算法在时刻T 2前发现故障的f=f+1;
(4)当i不大于yb 时,i=i+1,转至(5.3)步,当i大于y b时,执行第(5.5)步;
(5)由于故障样本是根据历史统计的平均值基础上叠加裕量获得,因此可以通过灵敏度计算公式L=f/yb ×100%获知被检测算法的可靠程度。

3 实 例

对广州蓄能水电厂2019年04月10日11∶00至19∶00,4号机组发电工况启动的监控信号进行实例分析。结合图1流程,本文技术包含以下步骤:
(1)从表1时序事件记录表、表2温度测点表中读取事件记录顺序情况、温度测点ID,该温度测点一级报警值b 1=75 ℃,二级报警值为b 2=80 ℃。
Tab.1 Sequence event record

表1 时序事件记录表

序号

开关量

信号

事件描述 状态
1 K 1 机组开机信号 已开机
2 K 6 机组工况到达稳态信号 已到达稳态
Tab.2 Temperature measuring point table

表2 温度测点表

温度信号 温度测点ID 温度测点短名 描述
M 1 3088226 04GTASMS4 广蓄A厂机组4_SMS4_上导瓦温7
(2)获取机组近半年正常运行状态的运行记录形成基于开关量信号的温度测点测值历史统计,测点测值集合 CL 的平均值V ave=60.7 ℃。
(3)综合历史统计、温度测点报警值、温度测点当前测值计算获得带时标的温度测点模拟测值。
计算获得叠加斜率k 1=b 1/V ave-1= 75/60.7-1=0.235 6,计算获得叠加斜率k 2=b 2/V ave-1=80/60.7-1=0.318 0。
获得叠加斜率向量 k 后各元素加0.01后, k =[0.245 6, 0.262 1,0.278 5,0.295 0,0.311 5]T
(4)将带时标的温度测点模拟测值提供给机组启动状态温度测值智能预测算法测试,并计算灵敏度。
图2蓝色曲线为温度测点的实测原值,黑色曲线为带时标的温度测点模拟测值,将带时标的温度测点模拟测值提供给机组启动状态温度测值智能预测算法进行测试。
Fig.2 Measured and simulated curves

图2 实测曲线和模拟曲线

Full size|PPT slide

在时刻T 2前发现故障f=4,yb =5,则灵敏度L=f/yb ×100%=80%。
(5)当灵敏度小于阈值时,发出报警提醒技术人员调整算法。灵敏度L不小于阈值,无需发报警提醒技术人员调整算法。

4 结 语

本文提供了针对机组启动状态温度测值智能预测算法测试的标准化测试方法,提供的测试可完全覆盖故障情况下的趋势特征,打破了原依靠实测故障样本的局限性。可自动根据机组历史运行情况进行自适应调整以满足测试要求,使得获得故障样本和测试智能技术实施效果的工作,得以通过计算机多快好省的一揽子解决。同时也实现了对智能技术实施效果的量化评价,为智能技术调参,遴选合适算法和实施手段提供指标支撑,也实现了智能技术实施效果验证工作的前移,避免通过实际工程进行验证带来的损失和不确定影响。

References

1
王海波. 发电厂集控值班员评价系统的建设与实施[J]. 华电技术201436(5):8-10,76.
2
KRATZERT F KLOTZ D HERRNEGGER M,et al. Toward improved predictions in ungauged basins: exploiting the power of machine learning[J]. Water Resources Research201955(12): 11 344-11 354.
3
RAGHAVAN S CHOWDHUR B. State diagram-based life cycle management plans for power plant components[J]. IEEE Transactions on Smart Grid20156(2):965-972.
4
HE Q LI H ZHU Z Y. A new Spot-Checking Management System for Power Plant[C]// Second International Conference on Information and Computing Science,Manchester,2009:385-388.
5
林孝斌,江浩侠,胡金磊,等. 面向变电站安全监控的视频智能终端布点优化[J]. 电力系统保护与控制201947(12):146-152.
6
CORO G TRUMPY E. Predicting geographical suitability of geothermal power plants[J]. Journal of Cleaner Production2020:121 874.
7
刘 巨,姚 伟,文劲宇,等. 大规模风电参与系统频率调整的技术展望[J]. 电网技术201438(3):638-646.
8
来 璐,冯宇鹏,张海龙,等. 一种300 MW变速抽水蓄能机组自启动策略[J]. 水电与抽水蓄能20184(6):103-108,117.
9
PANNATIER Y KAWKABANI B NICOLET C,et al. Investigation of control strategies for variable-speed pump-turbine units by using a simplified mode of the converters[J]. IEEE Transactions on Industrial Electronics201057(9):3 039-3 049.
10
纪 历,邵宜祥,高苏杰,等. 可变速抽水蓄能机组交流励磁系统自抗扰控制[J]. 电力系统自动化201741(13):162-167.
11
CHEN H YUN Y LIU D. The Research of Hydropower Plant Unit State Overhaul[C]// 2011 International Conference on Consumer Electronics,Communications and Networks (CECNet),XianNing,2011:2 780-2 783.
12
王劭菁,马文嘉,王丰华,等. 基于虚拟样本生成技术与概率神经网络的接地网故障诊断[J]. 高压电器202056(6):309-316.
13
刘云鹏,许自强,和家慧,等. 基于条件式Wasserstein生成对抗网络的电力变压器故障样本增强技术[J]. 电网技术202044(4):1 505-1 513.
14
HAN W WANG L FENG R,et al. Sample generation based on a supervised wasserstein generative adversarial network for high-resolution remote-sensing scene classification[J]. Information Sciences2020539:177-194.
PDF(784 KB)

603

Accesses

0

Citation

Detail

Sections
Recommended

/