
Displacement Prediction Model of EEMD-RNN Concrete Dam Based on HS Algorithm Optimization
Peng-fei FAN, Fu-yuan ZHU
Displacement Prediction Model of EEMD-RNN Concrete Dam Based on HS Algorithm Optimization
Due to the noise error in the monitoring process of concrete dam displacement, the intelligent algorithm is prone to overall fitting, local minimum value and slow convergence speed. In order to solve the above problems, this paper uses the ensemble empirical mode decomposition (EEMD) method to decompose the measured displacement values to obtain the components IMF and residual R with different frequencies. Then, the components and residual terms are trained by recurrent neural network (RNN) to obtain the mapping relationship between environmental variables and time effect and IMF and R. Finally, the predicted response values of each component and residual term can be obtained by the mapping relation obtained from the model, and the predicted value of displacement can be obtained by summation with equal weight. In the process of RNN training, harmony search algorithm (HS) is introduced to optimize the RNN, systematically de-noising, and a certain probability limit function is used to disturb to get the optimal solution. Thus, the weights and thresholds of RNN are optimized and the robustness of the model is improved. Taking a concrete dam as an example, the results show that HS-EEMD-RNN model has higher accuracy of overall fitting and prediction, and less overfitting degree. Compared with EEMD-RNN model, HS algorithm can significantly improve the accuracy of its model, and has high precision in predicting the sudden jump value of displacement hydrograph.
displacement prediction / concrete dam / ensemble empirical mode decomposition (EEMD) / harmony search method (HS) / recurrent neural network (RNN) {{custom_keyword}} /
Tab.1 Comparison of fitting accuracy of two models表1 两种模型的拟合精度对比 |
模型 | R | MAE/mm | RMSE/mm | MAPE |
---|---|---|---|---|
EEMD-RNN | 0.986 5 | 0.197 | 0.207 | 0.107 |
HS-EEMD-RNN | 0.991 8 | 0.074 | 0.086 | 0.041 |
Fig.6 Prediction of total displacement by EEMD-RNN model and HS-EEMD-RNN model图6 EEMD-RNN模型和HS-EEMD-RNN模型对总位移的预测 |
Tab.2 Comparison of prediction error between EEMD-RNN model and HS-EEMD-RNN model表2 EEMD-RNN和HS-EEMD-RNN模型预测值误差对比 |
模型 | 平均绝对误差/mm | 均方根误差 /mm | 平均绝对 百分比误差 |
---|---|---|---|
EEMD-RNN | 0.221 | 0.250 | 0.123 |
HS-EEMD-RNN | 0.088 | 0.101 | 0.048 |
Tab.3 Comparison of predicted values of displacement jump points表3 位移突跳点预测值对比 |
日期 | 位移实测值/ mm | 位移预测值/mm | 绝对百分比误差/% | ||
---|---|---|---|---|---|
HS-EEMD-RNN | EEMD-RNN | HS-EEMD-RNN | EEMD-RNN | ||
2017-07-07 | -1.353 | -1.348 28 | -1.408 28 | 0.34 | 4.10 |
2017-07-09 | -1.280 | -1.385 30 | -1.585 30 | 8.20 | 23.82 |
2017-07-16 | -1.381 | -1.406 81 | -1.466 81 | 1.87 | 6.22 |
2017-07-24 | -2.516 | -2.610 65 | -2.310 65 | 3.76 | 8.17 |
2017-07-28 | -3.090 | -3.054 94 | -2.614 94 | 1.12 | 15.36 |
2017-07-30 | -2.907 | -2.801 51 | -2.651 51 | 3.63 | 8.79 |
2017-08-03 | -0.941 | -1.098 20 | -1.338 20 | 16.71 | 42.22 |
2017-08-10 | -3.176 | -3.105 14 | -2.985 14 | 2.24 | 6.02 |
2017-08-12 | -2.439 | -2.583 02 | -2.683 02 | 5.91 | 10.01 |
2017-08-19 | -1.868 | -1.970 15 | -2.320 15 | 5.48 | 24.22 |
平均值 | - | - | - | 4.93 | 14.89 |
1 |
吴中如. 水工建筑物安全监控理论及其应用[M].北京:高等教育出版社,2003:2-4.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
周健,仲静文,郝利朋,等.基于马尔科夫链残差修正的EMD-MELM混凝土坝位移预测模型[J].水利水电技术,2020,51(6):40-48.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
彭圣军. 混凝土坝安全监控模型数值优化及变位预警指标研究[D].南昌:南昌大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
顾冲时,吴中如.混凝土坝空间位移场的确定性模型反演分析法[J].河海大学学报,1994(2):82-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
吴中如. 混凝土坝安全监控的确定性模型及混合模型[J]. 水利学报, 1989(5):64-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
徐朗,蔡德所.改进的PSO-SVM模型在大坝变形预测中的应用[J].中国农村水利水电,2018(3):120-123,128.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
郭志扬,王建,黄庆.基于卡尔曼滤波的GA-BP模型在大坝变形预测中的应用[J].中国农村水利水电,2016(12):113-116.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
何启,戴波.基于灰色神经网络-加权马尔可夫链的大坝变形监控模型及预报研究[J].中国农村水利水电,2016(10):146-150,155.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
刘淑琼,高鑫,李长春.EEMD-RBF神经网络的电离层TEC预报模型[J].测绘工程,2020,29(3):15-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李华,刘韬,伍星,等.EEMD和优化的频带熵应用于轴承故障特征提取[J].振动工程学报,2020,33(2):414-423.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
谭冬梅,刘晓飞,姚欢,等.基于EEMD-JADE的桥梁挠度监测中温度效应的分离[J].土木与环境工程学报(中英文),2020,42(3):90-99.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
周暄焯. 基于RNN及其融合方法的DNA甲基化预测模型研究[D].成都:电子科技大学,2020.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
芦效峰,张胜飞,伊胜伟. 基于CNN和RNN的自由文本击键模式持续身份认证[J].清华大学学报(自然科学版), 2018,58(12): 1 072-1 078.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
范竣翔,李琦,朱亚杰,等.基于RNN的空气污染时空预报模型研究[J].测绘科学,2017,42(7):76-83,120.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
张磊,丁香乾,宫会丽,等.改进和声搜索算法的近红外光谱特征变量选择[J].光谱学与光谱分析,2020,40(6):1 869-1 875.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
李明,胡江平.基于和声搜索算法的无线传感器网络多重连通覆盖[J].传感技术学报,2020,33(2):272-278.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
王志刚,郭钰卓,周启昕,等.基于和声搜索算法的RGV动态调度优化模型[J].海南大学学报(自然科学版),2019,37(2):112-118.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
21 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
22 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
23 |
DAS S,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |