
Research on the Optimization of Weir Layout of the Weir-Bottom Hole Combined Fishway
Jian-yu HUANG, Ping WEI, Chao JI, Biao WANG, Hao WANG
Research on the Optimization of Weir Layout of the Weir-Bottom Hole Combined Fishway
The baffle of the Weir-bottom hole combined fishway divides the Fishway into a continuous stepped pool, which increases the energy dissipation of the water in the pool and creates the upstream flow pattern of fishes. However, the different shapes, size and layout of weir and bottom hole will lead to the change of flow characteristics, and the layout of weir is an important feature that needs to be carefully considered.Taking a weir-hole combined fishway as the research object, a three-dimensional mathematical model is established to study the characteristics of the partitions of the Fishway pool room. The velocity distribution and flow structure in the fishway are optimized by changing the relative position p/B of weir. The results show that when the water depth in the fishway is 2 m, different weir layouts have a great influence on the flow structure of the pool room. Compared with the weir crest gaps staggered left and right in the original plan, when p/B = 0.6, the main stream in the pool room is clear, the range of return zone is relatively small, the maximum velocity at the weir and bottom hole is less than 1.0 m/s, and the maximum turbulent kinetic energy is 0.06 m2/s2,which can basically meet the upstream requirements of four major fishes and other cash fishes. In practical application, the optimal solution to P/B can be found according to the engineering practice.
Weir hole combined fishway / numerical simulation / velocity distribution / flow pattern {{custom_keyword}} /
Fig.7 Three dimensional model of flow velocity cloud diagram of different water layers(P/B=0)图7 不同水层流速云图三维模型(P/B=0) |
Tab.1 Distribution of maximum attenuation rate of mainstream velocity表1 主流轨迹线流速最大衰减率分布表 |
方案 | 方案1 | 方案2 | 方案3 | 方案4 | 方案5 |
---|---|---|---|---|---|
1-V min /V max/% | 54.1 | 50.6 | 38.9 | 36.8 | 33.3 |
1 |
胡亚安,李中华,杨宇,等. 水利工程鱼类保护技术[M]. 北京:中国水利水电出版社,2016:125-126
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
王琲,杨文俊,陈辉. 竖缝与堰组合式鱼道水力特性数值模拟研究[J]. 人民长江,2013,44(11):81-84.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
董志勇. 环境水力学[M]. 北京:科学出版社,2006:83-84
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
汪红波,王从锋,刘德富,等. 横隔板式鱼道水力特性数值模拟研究[J]. 水电能源科学,2012,30(5):65-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
刘鹄,程文,任杰辉,等.竖缝与孔口组合式鱼道流动特性模拟研究[J].水力发电学报,2017,36(6):38-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
黄明海,周赤,张亚利,等. 竖缝-潜孔组合式鱼道进鱼口渠段三维紊流数值模拟研究[C]// 中国水利学会水力学专业委员会、中国水力发电学会水工水力学专业委员会、国际水利工程与研究协会中国分会、水力学与水利信息学进展,2009(7):221-227.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
齐亮,杨宇,王悦,等. 鱼类对水动力环境变化的行为响应特征[J]. 河海大学学报(自然科学版),2012,40(4):438-445.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
胡乔一,祝龙. 孔缝组合式仿生态鱼道流动特性数值模拟研究[J]. 中国农村水利水电,2020(3):119-123.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
魏炳乾,黄磊,袁海石,等.竖缝式与仿自然结合鱼道水力特性及其优化[J].水利水运工程学报,2019(4):9-16.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
王晓刚,李云,何飞飞,等.竖缝式鱼道休息池水动力特性研究[J].水利水运工程学报,2020(1):40-50.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |