
Optimized RBF Neural Networks Predicts Coagulation in Waterworks
Jing-yi TUO, Bing-feng XU, Yue XÜ, Lan YU, Xue-ying WANG, Lu-yao GUO
Optimized RBF Neural Networks Predicts Coagulation in Waterworks
The amount of coagulation in the process of water purification in water plants is influenced by multiple water ingress factors, and the law of change presents a highly nonlinear pattern difficult to control. Based on the RBF optimized by PSO, a dynamic model of nonlinear high-dimensional mapping water plant with error reverse propagation is established. Compared with the single RBF model, the average relative error is reduced by 3.05%, the maximum relative error is reduced by 0.198 6, and has a faster iterative convergence speed,and also has good adaptability to the water plant of different processes.
coagulant dosage / RBF neural network / particle swarm optimization / waterworks {{custom_keyword}} /
表1 自来水厂常用模拟算法精度对比 |
模型 | 类别 | MRE(平均相对误差) | RE max(最大相对误差) | RE min(最小相对误差) | 分析 |
---|---|---|---|---|---|
回归分析 | 高浊[ | 0.101 0 | 0.320 0 | 0.015 2 | 数据分类复杂、精度较差 |
低浊[ | 0.086 7 | 0.326 4 | 0 | ||
机理模型 | 5~15 ℃[ | - | 0.351 0 | 0 | 难以增加计算维度来进行多因素分析 |
15~25 ℃[ | - | 0.150 8 | 0 | ||
单一神经网络 | BP[ | 0.098 2 | 0.220 5 | 0.000 8 | 迭代次数多、收敛速度慢、易陷入局部最小[ |
RBF | 0.086 8 | 0.324 1 | 0.005 4 | 收敛速度快、拟合能力高 |
表2 优化组合的RBF与单一RBF模型运行精度对比 |
算法名称模型 | MRE | MAE | RE max | RE min |
---|---|---|---|---|
PSO优化RBF神经网络 | 0.056 3 | 0.238 | 0.125 5 | 0.001 5 |
单一RBF神经网络 | 0.086 8 | 0.483 | 0.324 1 | 0.005 4 |
组合与单一网络差值 | 0.030 3 | 0.245 | 0.198 6 | 0.003 9 |
1 |
徐少川,阎相伊,刘宝伟,等.智能控制在净水混凝投药系统中的应用[J].中国给水排水,2017,33(13):60-63.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张瑶瑶. 沈阳某给水厂水质参数回归分析与应用研究[D].哈尔滨:哈尔滨工业大学,2017.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
刘泽华. 运用数学模型方法建立投药自动化系统[D].重庆:重庆大学,2002.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
李培军. 混凝投药工艺控制技术研究[D].成都:西华大学,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
唐德翠,邓晓燕,朱学峰,等.水厂混凝剂投加量建模研究[J].水处理技术,2010,36(6):54-56,89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
王晓杰,嵇赟喆.运用人工神经网络预测净水厂混凝投药的研究[J].中国科技信息,2005(12):54-53.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
李拓. 基于BP神经网络的水厂混凝投药控制系统研究[D].昆明:昆明理工大学,2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
蒋绍阶,仇洪建,段果,等.基于短程反馈BP神经网络的混凝投药控制中试[J].中国给水排水,2013,29(11):26-29.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
高俊岭,张义哲.基于PSO-RBF神经网络的锂电池SOC估算[J].重庆工商大学学报(自然科学版),2020,37(2):37-41.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
AbdullahS, Rama Chandra Pradhan, PradhanDileswar, et al. Modeling and optimization of pectinase-assisted low-temperature extraction of cashew apple juice using artificial neural network coupled with genetic algorithm, 2021,339.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
Science - Applied Sciences. Data from Central South University Provide New Insights into Applied Sciences (Fast Multi-Objective Antenna Optimization Based on RBF Neural Network Surrogate Model Optimized by Improved PSO Algorithm)[J]. Computers, Networks &;Communications, 2019.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
丁承君,张家梁,冯玉伯,等.基于PSO优化RBF神经网络的往复式压缩机故障诊断[J].制造业自动化, 2020,42(6):47-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
赵寅军. 混凝投药预测函数控制研究[D].杭州:浙江工业大学,2011.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
黄丽娟. 水厂混凝投药量复合控制系统的研究与应用[D].长沙:中南大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
饶小康,贾宝良,鲁立.基于人工神经网络算法的水厂混凝投药控制系统研究与开发[J].长江科学院院报,2017,34(5):135-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
夏学文,刘经南,高柯夫,等.具备反向学习和局部学习能力的粒子群算法[J].计算机学报,2015,38(7):1 397-1 407.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
张栒,湛成伟,邓辉文,等.一种快速减法聚类算法[J].西南师范大学学报(自然科学版),2006(3):126-129.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
周维华. RBF神经网络隐层结构与参数优化研究[D].上海:华东理工大学,2014.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
毛湘云,徐冰峰,孟繁艺.PSO-SVM与BP神经网络组合预测供水系统余氯的方法[J].土木与环境工程学报(中英文),2019,41(4):159-164.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |