
Global Sensitivity Analysis of Air Vessel for Water Hammer Protection Based on EFAST Method
Hong RAN, Jin JIANG, Zhi-fang LIAO, Bai-yun ZHANG, Yu PENG
Global Sensitivity Analysis of Air Vessel for Water Hammer Protection Based on EFAST Method
The influence of various parameter changes of the vertical air vessel in the long-distance water conveyance system on its water hammer protection ability is analyzed and discussed. By taking a water supply project as an example, the Extended Fourier Amplitude Test (EFAST) method is used. The maximum positive pressure, the minimum negative pressure and the maximum reversing speed of the pump in the accidental pumping condition are taken as the results of the air vessel water hammer protection. An analysis of the parameter is based on the global sensitivity of the air vessel water hammer protection effect when the reference value is ±50%. The results show that the main parameters that affect the maximum water hammer pressure of the air vessel are the diameter of the connecting pipe, the volume of the air vessel and the gas-liquid ratio; the main parameters that affect the lowest negative pressure are the diameter of the connecting pipe, the outlet local resistance coefficient, the gas-liquid ratio and the length of the connecting pipe. The main parameters that affect the maximum reversing speed of the pump are the diameter of the connecting pipe, the gas-liquid ratio and the volume of the air vessel in order. Among them, the diameter of the connecting pipe between the air vessel and the main pipe is the most sensitive parameter that affects the maximum pressure, the minimum negative pressure and the maximum reverse speed of the pump.
air vessel / sensitivity analysis: EFAST / water hammer protection {{custom_keyword}} /
1 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
李琨,吴建华,刘亚明,等.空气罐对泵站水锤的防护效果研究[J].人民长江,2020,51(2):200-204.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
马世波,张健 .长距离输水工程停泵水锤防护措施研究[J].人民长江,2009,40(1):85-86.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
魏振荣.空气罐的水锤防护特性及其工程应用[J].东北水利水电,2017,35(6):67-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
邓安利,蒋劲,兰刚,等.长距离输水工程停泵水锤的空气罐防护特性[J].武汉大学学报(工学版),2015,48(3):402-406.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
龚娟,张健,俞晓东.高扬程输水系统空气罐阻抗孔尺寸优化[J].水电能源科学,2013,31(5):166-169.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
任启伟,陈洋波,舒晓娟.基于Extend FAST方法的新安江模型参数全局敏感性分析[J].中山大学学报(自然科学版),2010,49(3):127-134.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
崔金涛,邵光成,林洁,等.基于EFAST的CROPGRO-Tomato模型参数全局敏感性分析[J].农业机械学报,2020,51(1):237-244.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
李炜.水力计算手册[M].北京:中国水利水电出版社,2007:9-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
中国华人民共和国水利部. 泵站设计规范:GB50265-2010 [S].北京:中国计划出版社,2011:49.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
霍世璐,段磊,刘明明,等.VG模型参数对灌溉补给系数的敏感性分析[J].水利水电技术, 2020,51(7):177-185.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
兴安,卓志清,赵云泽,等.基于EFAST的不同生产水平下 WOFOST模型参数敏感性分析[J].农业机械学报,2020,51(2):161-171.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |