
An Analysis of the Applicability of CMADS Data to Hydrological Simulation in the Source Region of the Yangtze River
Wei LIU, Hai-jun WANG, Cui-ying CHEN
An Analysis of the Applicability of CMADS Data to Hydrological Simulation in the Source Region of the Yangtze River
The China Meteorological Assimilation Driving Datasets(CMADS) is based on a variety of meteorological field data and meteorological station measured data, coupled to support the SWAT model-driven data set in China. The source region of the Yangtze River is located in the center of Qinghai-Tibet Plateau, the natural environment is bad, and the distribution of hydro-meteorological stations is less. Four meteorological station’s data and the CMADS data in the source region of the Yangtze River are used as driving data to verify the applicability of the CMADS data in the source region of the Yangtze River. It is found that the SWAT model has certain applicability in the source region of the Yangtze River. The Nash efficiency coefficients of the calibration and the validation period are 0.682 and 0.615 respectively. The CMADS data are poor in the source region of the Yangtze River. The Nash efficiency coefficient of the simulated runoff is only 0.447. Compared with the measured precipitation data, the quality of CMADS precipitation data in the source region of the Yangtze River is worse, but the quality of temperature data is better.
CMADS data set / SWAT model / hydrological simulation / the source region of the Yangtze River / Tibetan Plateau {{custom_keyword}} /
Tab.1 The parameters calibration results of the SWAT model表1 SWAT模型参数率定结果表 |
参数名 | 参数含义 | 参数优化方式 | 参数敏感性 | 初始范围 | 率定值 |
---|---|---|---|---|---|
SOL_AWC(1).sol | 第一层土壤有效含水率 | R | 敏感 | -0.2~0.4 | 0.34 |
SOL_K(1).sol | 第一层土壤饱和水力传导度 | R | 敏感 | -0.8~0.8 | 0.13 |
CN2.mgt | SCS径流曲线数 | R | 不敏感 | -0.2~0.2 | 0.26 |
ALPHA_BF.gw | 基流消退系数 | V | 敏感 | 0~1 | 0.55 |
GW_DELAY.gw | 地下水延迟时间 | V | 不敏感 | 30~450 | 219 |
GWQMN.gw | 浅层地下水径流系数 | V | 敏感 | 0~2 | 0.70 |
GW_REVAP.gw | 地下水再蒸发系数 | V | 不敏感 | 0~0.2 | 0.05 |
ESCO.hru | 土壤蒸发补偿系数 | V | 敏感 | 0.8~1.0 | 0.81 |
CH_N2.rte | 河道曼宁系数 | V | 敏感 | 0~0.3 | 0.27 |
CH_K2.rte | 主河道水力传导率 | V | 不敏感 | 5~130 | 93.76 |
Tab.2 Statics results of calibration and validation period in the source region of the Yangtze River表2 长江源区率定期和验证期统计结果表 |
时期 | Re /% | R 2 | NS |
---|---|---|---|
率定期 | 12.322 | 0.788 | 0.682 |
验证期 | 7.105 | 0.692 | 0.615 |
Fig.5 Runoff comparison driven by CMADS and four meteorological stations data图5 CMADS数据与4气象站数据驱动下模拟径流对比 |
Tab.3 Statics of simulated runoff表3 径流模拟结果统计分析 |
驱动数据 | Re | R 2 | NS |
---|---|---|---|
4气象站(2009-2016) | 14.563 | 0.678 | 0.633 |
CMADS (2009-2016) | -30.417 | 0.521 | 0.447 |
Fig.6 Comparation between measured and CMADS points precipitation图6 实测降水与CMADS点降水比较 |
Tab.4 Statics of measured and CMADS point precipitation表4 实测降水与CMADS点降水统计分析 |
降水 | Re /% | R 2 | NS |
---|---|---|---|
玉树&133-149 | 2.493 | 0.195 | -0.201 |
曲麻莱&137-144 | -19.355 | 0.218 | 0.089 |
沱沱河&138-131 | -25.78 | 0.093 | -0.243 |
伍道梁&142-133 | -43.504 | 0.001 | -0.457 |
Tab.5 Statics of measured and CMADS point temperature表5 实测气温与CMADS点气温统计分析 |
实测&CMADS点 | 气温 | Re /% | R 2 | NS |
---|---|---|---|---|
玉树与&133-149 | T max | -13.654 | 0.95 | 0.89 |
T min | 56.006 | 0.908 | 0.876 | |
曲麻莱&137-144 | T max | -2.289 | 0.984 | 0.983 |
T min | 1.019 | 0.937 | 0.935 | |
沱沱河&138-131 | T max | -12.649 | 0.989 | 0.982 |
T min | 3.367 | 0.957 | 0.956 | |
伍道梁&142-133 | T max | -19.755 | 0.988 | 0.982 |
T min | 3.806 | 0.952 | 0.95 |
1 |
周森,周银军,王军,等.长江源曲麻莱段河床沉积物分布特征[J].长江科学院院报,2019,36(3):8-12.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
张宇欣,李育,朱耿睿.青藏高原海拔要素对温度、降水和气候型分布格局的影响[J].冰川冻土,2019,41(3):505-515.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
郝振纯,童凯,张磊磊,等.TRMM降水资料在青藏高原的适用性分析[J].水文,2011,31(5):18-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
贾建伟,王栋,沈杰,等.基于HBV模型的高寒区径流模拟研究[J].人民长江,2018,49(22):83-87.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
刘晓林,杨胜天,赵长森,等.雅江流域多源遥感驱动的SRM模型精度影响因子研究[J].北京师范大学学报(自然科学版),2015,51(6):606-612.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
邓鹏,黄鹏年.基于VIC模型的淮河中上游地区水量空间分布研究[J].水电能源科学,2018,36(2):28-31.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
陈亮,董晓华,李英海,等.基于SWAT模型的黄柏河东支流域气候变化的水文响应研究[J].三峡大学学报(自然科学版),2019,41(2):1-5.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
窦小东,李蒙,易琦,等.气候变化对大盈江流域径流的影响[J].北京师范大学学报(自然科学版),2019,55(6):780-785.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
郑思远,王飞儿,俞洁,等.水文响应单元划分对SWAT模型总氮模拟效果的影响[J].农业环境科学学报,2019,38(6):1 305-1 311.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
王磊,刘亭亭,谢建治.基于SWAT模型的张家口清水河流域土地利用情景变化对径流影响研究[J].水土保持研究,2019,26(4):245-251.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
王富强,王金杰,石家豪.基于SWAT模型的区域农业干旱模拟研究[J].华北水利水电大学学报(自然科学版),2019,40(1):64-70.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
刘宁,张霞,祝雪萍,等.基于SWAT模型和SUFI-2算法的碧流河流域径流模拟[J].水力发电,2019,45(3):18-22,89.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
苏欣,陈震.SWAT模型在青铜峡灌区水循环的应用研究Ⅱ:模型应用[J].节水灌溉,2019(1):18-21.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
孟现勇,师春香,刘时银,等.CMADS数据集及其在流域水文模型中的驱动作用:以黑河流域为例[J].人民珠江,2016,37(7):1-19.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
闫霞,周银军,姚仕明.长江源区河流地貌及水沙特性[J].长江科学院院报,2019,36(12):10-15.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
熊明,邹珊,姜彤,等.长江源区河流水温对气候变化的响应[J].人民长江,2018,49(14):48-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
20 |
梁川,潘妮.长江源高寒区域河川径流预测方法及其对比分析[J].南水北调与水利科技,2012,10(1):35-39.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |