
Evaluation and Prediction of Temporal and Spatial Changes of Water Resources Carrying Capacity in the Beijing-Tianjin-Hebei Region
Jing WANG, Gui-long HU, Liang ZHANG
Evaluation and Prediction of Temporal and Spatial Changes of Water Resources Carrying Capacity in the Beijing-Tianjin-Hebei Region
Studying the carrying capacity of regional water resources is an important guarantee for realizing regional sustainable development. Taking the Beijing-Tianjin-Hebei region as the research object, this paper selects 16 evaluation indicators and divides the indicators into four sub-systems: society-economy-ecology-water resources from the perspective of the system. Then according to the principle of minimum information entropy, the entropy method, CRITIC method and mutation, the weights determined by the coefficient method are coupled, and the objective function is constructed to find the optimal combination weights through the genetic algorithm and calculate the comprehensive score. On this basis, the BP neural network is used to train the model and predict the future trend of the Beijing-Tianjin-Hebei water resources carrying capacity. The results show that the water resources carrying capacity of the Beijing-Tianjin-Hebei region was initially at a low level but there was an upward trend, the mid-term jitter declined at a low level, and showed an upward trend in recent years. It is predicted that the water resources carrying capacity of the Beijing-Tianjin-Hebei Region will be at a high level and reach a steady state.
water resources carrying capacity / CRITIC method / entropy method / coefficient of variation method / BP neural network / genetic algorithm {{custom_keyword}} /
Tab.1 Evaluation index system of water resources carrying capacity表1 水资源承载力评价指标体系 |
子系统 | 评价指标及单位 | 含义与计算 | 指标类型 |
---|---|---|---|
社会 | 人口密度r 1/(人·km-2) | 人口与区域面积之比 | 负向指标 |
人口自然增长率r 2/‰ | 人口自然增加数与该时期内平均人数之比 | 负向指标 | |
人均日生活用水量r 3/L | 每一用水人口平均每天的生活用水量 | 负向指标 | |
经济 | 人均地区生产总值r 4/(元·人-1) | 生产总值与人口之比 | 正向指标 |
万元工业增加值耗水量r 5/(m3·万元-1) | 工业用水量与工业增加值之比 | 负向指标 | |
水产品总产量r 6/万t | 渔业生产活动的最终有效成果 | 正向指标 | |
生态 | 建成区绿化覆盖率r 7/% | 建成区内绿化覆盖面积与区域面积之比 | 正向指标 |
废水排放总量r 8/万t | 工业废水排放量与生活污水排放量之和 | 负向指标 | |
化学需氧量排放量r 9/万t | 用化学氧化剂氧化水中有机污染物时所需的氧量 | 负向指标 | |
氨氮排放量r 10/万t | 污水中氨氮含量 | 负向指标 | |
生态环境用水率r 11/% | 生态环境用水量与总用水量之比 | 正向指标 | |
城市污水日处理能力r 12/万m3 | 污水处理厂和污水处理装置每昼夜处理污水量的设计能力 | 正向指标 | |
水资源 | 产水模数r 13/(万m3·km-2) | 水资源总量与区域面积之比 | 正向指标 |
人均水资源量r 14/(m3·人-1) | 水资源总量与人口之比 | 正向指标 | |
地表水资源量r 15/亿m3 | 河流、湖泊以及冰川等地表水体中逐年更新的动态水量 | 正向指标 | |
供水综合生产能力r 16/(万m3·d-1) | 按供水设施多个环节设计能力计算的综合生产能力 | 正向指标 |
Tab.2 Evaluation index weight表2 评价指标权重 |
子系统 | 指标 | 熵权法权重 | CRITIC法权重 | 变异系数法权重 | 组合权重 |
---|---|---|---|---|---|
社会子系统 (0.174 1) | r 1 | 0.125 5 | 0.116 7 | 0.008 0 | 0.059 8 |
r 2 | 0.130 7 | 0.049 2 | 0.022 5 | 0.068 1 | |
r 3 | 0.081 6 | 0.063 7 | 0.009 2 | 0.046 2 | |
经济子系统 (0.157 7) | r 4 | 0.019 6 | 0.050 0 | 0.078 6 | 0.052 6 |
r 5 | 0.051 1 | 0.045 6 | 0.107 0 | 0.079 8 | |
r 6 | 0.003 8 | 0.058 2 | 0.035 3 | 0.025 3 | |
生态子系统 (0.504 4) | r 7 | 0.000 6 | 0.054 1 | 0.013 8 | 0.010 3 |
r 8 | 0.173 1 | 0.105 2 | 0.032 9 | 0.106 3 | |
r 9 | 0.139 9 | 0.079 1 | 0.128 1 | 0.129 6 | |
r 10 | 0.130 1 | 0.067 3 | 0.096 9 | 0.118 2 | |
r 11 | 0.090 9 | 0.040 5 | 0.190 8 | 0.112 7 | |
r 12 | 0.004 8 | 0.046 4 | 0.039 4 | 0.027 3 | |
水资源子系统 (0.163 8) | r 13 | 0.011 4 | 0.052 2 | 0.062 9 | 0.042 1 |
r 14 | 0.010 5 | 0.052 1 | 0.060 4 | 0.040 8 | |
r 15 | 0.025 3 | 0.053 6 | 0.094 7 | 0.065 4 | |
r 16 | 0.001 1 | 0.066 1 | 0.019 4 | 0.015 5 |
1 |
刘佳骏,董锁成,李泽红. 中国水资源承载力综合评价研究[J]. 自然资源学报, 2011,26(2):258-269.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
许杨,陈菁,夏欢,等. 基于DPSR-改进TOPSIS模型的淮安市水资源承载力评价[J]. 水资源与水工程学报, 2019,30(4):47-52.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
MEN B,
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
赵丹,刘东,武秋晨. 基于DPSIR-TOPSIS模型的区域农业水资源系统恢复力评价[J]. 中国农村水利水电, 2014(7):52-56.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
郭倩,汪嘉杨,张碧.基于DPSIRM框架的区域水资源承载力综合评价[J]. 自然资源学报, 2017,32(3):484-493.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
鲁佳慧, 唐德善. 基于PSR和物元可拓模型的水资源承载力预警研究[J]. 水利水电技术, 2019,50(1):58-64.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
孙康,陈立. 基于模糊分析法的芜湖市水资源承载力评价[J]. 中国农村水利水电, 2018(12):121-125.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
段新光,栾芳芳. 基于模糊综合评判的新疆水资源承载力评价[J]. 中国人口·资源与环境, 2014,24(3):119-122.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
孙雅茹,董增川,刘淼. 基于改进TOPSIS法的盐城市水资源承载力评价及障碍因子诊断[J]. 中国农村水利水电, 2018(12):101-105.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
郝小宇,张鑫,雍志勤. 榆林市水资源承载力空间分异[J]. 排灌机械工程学报, 2019,37(12):1 037-1 043.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
田相俊,李翠平,曹志国,等. 基于TOPSIS法的西部矿区水资源承载力综合评价[J]. 矿业研究与开发, 2020,40(9):170-175.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
陈红光,李晓宁,李晨洋. 基于变异系数熵权法的水资源系统恢复力评价:以黑龙江省2007-2016年水资源情况为例[J]. 生态经济, 2021,37(1): 179-184.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
傅春,李雅蓉. 江西省水资源承载力评价及障碍因子诊断[J]. 人民长江, 2019,50(8): 109-114.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
管新建,秦海东,孟钰. 基于CRITIC-TOPSIS-灰色关联度的淮河流域水资源利用效率评估[J]. 节水灌溉, 2018(11):73-76.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
胡宝华,晁伟鹏,喻晓玲. 干旱区水资源承载力空间布局研究:以新疆为例[J]. 资源开发与市场, 2018,34(8):1 093-1 098.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
杨丽花,佟连军. 基于BP神经网络模型的松花江流域(吉林省段)水环境承载力研究[J]. 干旱区资源与环境, 2013,27(9):135-140.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
17 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
18 |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
19 |
杨海燕,孙晓博,程小文,等. 基于VIKOR法的潍坊市水资源承载力综合评价[J]. 环境科学学报, 2020,40(2):716-723.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |