
Evolution and Influencing Factors Analysis of Water and Sediment Evolution in the Upper Yellow River in Recent 60 Years
Hong-xiang WANG, Ke-fei YANG, Jing-hang LIU, Pu-fan HUANG, Wen-xian GUO
Evolution and Influencing Factors Analysis of Water and Sediment Evolution in the Upper Yellow River in Recent 60 Years
In order to reveal the variation law and driving factors of runoff and sediments in the upper reaches of the Yellow River, according to the time series data of three representative hydrological stations in the upper reaches of the Yellow River, average difference T methods, double cumulative curve method, wavelet analysis, cumulative slope rate change rate method and other methods are used to analyze and study the characteristics of runoff and sediment change in the upper reaches of the Yellow River. The results show that the runoff and sediment discharge of the three representative stations in the upper reaches of the Yellow River showed a decreasing trend from 1960 to 2019. The annual runoff at Tangnaihai Station, Lanzhou Station and Toudaoguai Station in the upper reaches of the Yellow River havean abrupt change in 1989, 1985 and 1985, and the annual sediment load of the three stations abrupt change in 1989, 1999 and 1985. Wavelet analysis is used to find that runoff has a main cycle of 9~16 a, and sediment discharge has a main cycle of 11~16 a. The cumulative sediment reduction of the three stations in the upper reaches of the Yellow River is about 107 million t,1.1 billion t and 1.639 billion t, respectively, and the sediment reduction increased along the river. The variation law of runoff and sediment is influenced by precipitation and human activities, and human activities play an important role in the variation of water and sediment.
The upper reaches of the Yellow River / runoff / sediment discharge / influencing factors / human activities {{custom_keyword}} /
Tab.1 Mann-Kendall non-parametric test of runoff and sediment discharge表1 径流量和输沙量Mann-Kendall非参数检验 |
水文站 | 唐乃亥 | 兰州 | 头道拐 | |
---|---|---|---|---|
径流量 | ZC | -1.109 8 | -1.556 2 | -3.259 1 |
检验判别 | | ZC |<1.28 | | ZC |>1.28 | | ZC |>2.32 | |
趋势性 | 减少 | 减少 | 减少 | |
显著性 | 不显著 | 比较显著 | 显著 | |
输沙量 | ZC | -1.128 9 | -4.815 3 | -4.828 1 |
检验判别 | | ZC |<1.28 | | ZC |>2.32 | | ZC |>2.32 | |
趋势性 | 减少 | 减少 | 减少 | |
显著性 | 不显著 | 显著 | 显著 |
Tab.2 Mean difference T test of annual sediment discharge and runoff表2 年输沙量和径流量均值差异T检验 |
水文站 | 项目 | 年份 | 基准年 | 突变指数 | 统计量 | 临界值 |
---|---|---|---|---|---|---|
唐乃亥 | 输沙量 | 1989 | 30 | 0.33 | 2.50 | 2.00 |
径流量 | 1989 | 30 | 0.30 | 2.35 | 2.00 | |
兰州 | 输沙量 | 1999 | 40 | 0.42 | 3.72 | 2.00 |
径流量 | 1985 | 26 | 0.44 | 3.44 | 2.00 | |
头道拐 | 输沙量 | 1985 | 26 | 0.89 | 6.62 | 2.00 |
径流量 | 1985 | 26 | 0.62 | 4.78 | 2.00 |
Fig.6 Cumulative runoff and precipitation in three different hydrological locations图6 累积径流量、累积降水量图 |
Fig.7 Cumulative sediment discharge and precipitation in three different hydrological locations图7 累积输沙量、累积降水量图 |
Tab.3 Contribution rate of precipitation and human activities to runoff at hydrological stations in different periods表3 不同时段各水文站降水和人类活动对径流量贡献率 |
水文站 | 时期 | 径流量(YR ) | 降水量(YP ) | 降水量(CP ) | 人类活动(CH ) |
---|---|---|---|---|---|
唐乃亥 | 突变前 | 220.18 | 386.04 | - | - |
突变后 | 184.15 | 375.13 | 17.27 | 82.73 | |
兰州 | 突变前 | 337.11 | 250.81 | - | - |
突变后 | 272.81 | 252.79 | -41.37 | 141.37 | |
头道拐 | 突变前 | 247.81 | 390.33 | - | - |
突变后 | 161.33 | 378.48 | 8.70 | 91.30 |
Tab.4 Contribution rate of precipitation and human activities to sediment discharge at hydrological stations in different periods表4 不同时段各水文站降水和人类活动对输沙量贡献率 |
水文站 | 时期 | 输沙量(YR ) | 降水量(YP ) | 降水量(CP ) | 人类活动(CH ) |
---|---|---|---|---|---|
唐乃亥 | 突变前 | 0.141 7 | 386.04 | - | - |
突变后 | 0.094 1 | 375.13 | 8.41 | 91.59 | |
兰州 | 突变前 | 0.806 7 | 250.81 | - | - |
突变后 | 0.348 6 | 252.79 | -0.60 | 100.60 | |
头道拐 | 突变前 | 1.354 4 | 390.33 | - | - |
突变后 | 0.429 1 | 378.48 | 4.43 | 95.57 |
1 |
赵阳,胡春宏,张晓明,等.近70年黄河流域水沙情势及其成因分析[J].农业工程学报,2018,34(21):112-119.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
2 |
李勃,穆兴民,高鹏,等. 1956-2017年黄河干流径流量时空变化新特征[J].水土保持研究,2019,26(6):120-126,132.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
3 |
马超,崔冉昕.基于变化范围法的黄河头道拐站水沙变化分析[J].水力发电学报,2018,37(5):58-68.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
4 |
王鸿翔,赵颖异,刘静航,等.近50年黄河下游水沙情势演变及其影响因素分析[J].水力发电,2020,46(9): 48-54.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
5 |
郭文献,李越,王鸿翔.近60年来长江入海水沙演变规律及影响因素分析[J].中国农村水利水电,2019(7):60-65.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
6 |
刘成,王兆印,隋觉义.我国主要入海河流水沙变化分析[J].水利学报,2007(12):1 444-1 452.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
7 |
王乐平.基于小波变换的黄河下游水沙变化特征及其成因分析[D].太原:太原理工大学,2015.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
8 |
王随继,闫云霞,颜明,等.皇甫川流域降水和人类活动对径流量变化的贡献率分析:累积量斜率变化率比较方法的提出及应用[J].地理学报,2012,67(3):388-397.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
9 |
王霞,吴加学.基于小波变换的水沙关系特征分析:以长江大通站为例[J].海洋学研究,2009,27(2):16-22.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
10 |
郭文献,李越,查胡飞,等.近50年来乌江水沙特征变化研究[J].水力发电,2020,46(2):22-26,60.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
11 |
燕慧婷,王飞,何毅,等.人类活动对黄河河源区水沙变化影响评价[J].泥沙研究,2015(2):40-46.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
12 |
马龙,刘廷玺,马丽,等.气候变化和人类活动对黄河流域内蒙古段典型支流径流变化的贡献[J].水利水电技术,2014,45(11):18-23.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
13 |
翟秋敏,宁玉鑫,刘帅.黄河中下游泥沙变化及其影响分析[J].河南科技,2020(16):78-80.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
14 |
左仲国,肖培青,黄静.黄河流域水土保持科研进展及展望[J].中国水土保持,2016(9):63-67,93.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
15 |
张世军,陈国梁,魏连双,等.大中型水利工程对黄河上游输沙量的影响研究[C]//全国水文泥沙文选.中国水力发电工程学会水文泥沙专业委员会:中国水力发电工程学会,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
16 |
王好忠,苏军希,孙贵山,等.大中型水利工程对黄河上游水资源影响的分析[C]//全国水文泥沙文选.中国水力发电工程学会水文泥沙专业委员会:中国水力发电工程学会,2010.
{{custom_citation.content}}
{{custom_citation.annotation}}
|
{{custom_ref.label}} |
{{custom_citation.content}}
{{custom_citation.annotation}}
|
/
〈 |
|
〉 |